Log in

CVAE-LAYOUT: automatic furniture layout with constraints

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose an automatic layout method for indoor scenes that effectively satisfies specific constraints. Our approach involves enhancing the existing scene representation method to accommodate complex constraints, including the precise placement of doors, windows, and user-specified furniture. To achieve this, we construct a conditional vector that encapsulates the necessary constraints. Moreover, our automatically constrained layout approach is implemented by training a conditional variational autoencoder model. Given the constraints and randomly sampled vectors, the decoder module can generate diversified reasonable indoor layout results. Evaluations show that our model outperforms the existing methods. Furthermore, our model exhibits a lower parameter count and faster execution speed compared with the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chaudhuri, S., Kalogerakis, E., Giguere, S., Funkhouser, T.: Attribit: content creation with semantic attributes. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 193–202 (2013)

  2. Wang, M., Lyu, X., Li, Y., Zhang, F.: Vr content creation and exploration with deep learning: a survey. Comput. Vis. Med.a 6(1), 3–28 (2020)

  3. Zhang, Z., Yang, Z., Ma, C., Luo, L., Huth, A., Vouga, E., Huang, Q.: Deep generative modeling for scene synthesis via hybrid representations. ACM Trans. Graph. (TOG) 39(2), 1–21 (2020). https://doi.org/10.48550/ar**v.1808.02084

    Article  Google Scholar 

  4. Li, M., Patil, A., Xu, K., Chaudhuri, S., Khan, O., Shamir, A., Tu, C., Chen, B., Cohen-Or, D., Zhang, H.: Grains: generative recursive autoencoders for indoor scenes. ACM Trans. Graph. (TOG) 38(2), 1–16 (2019). https://doi.org/10.48550/ar**v.1807.09193

    Article  Google Scholar 

  5. Yi, Y., Yi, Y.: Environmental performance of furniture layouts in SI housing. J. Asian Archit. Build. Eng. 9(2), 547–553 (2010)

    Article  Google Scholar 

  6. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., Koltun, V.: Interactive furniture layout using interior design guidelines. ACM Trans. Graph. (TOG) 30(4), 1–10 (2011). https://doi.org/10.1145/2010324.1964982

    Article  Google Scholar 

  7. Chen, G., Li, G., Pei, L., et al.: Hierarchical constraints with particle swarm optimization for furniture arrangement. J. Comput.-Aided Des. Comput. Graph. 26(10), 10 (2014). (in Chinese)

    Google Scholar 

  8. Wang, C., Song, P., Zhang, H., Jia, J.: Online automatic placement algorithm of bedroom layout based on FBS. J. Comput.-Aided Des. Comput. Graph. 31(2), 11 (2019). (in Chinese)

    Google Scholar 

  9. Liu, M., Jiang, H., Xu, W., Xu, M., Mao, T., Wang, Z.: Automatic indoor areas layout for indoor scenes based on example database. J. Comput.-Aided Des. Comput. Graph. 29(1), 11 (2017). (in Chinese)

    Google Scholar 

  10. Fu, Q., Chen, X., Wang, X., et al.: Adaptive synthesis of indoor scenes via activity-associated object relation graphs. ACM Trans. Graph. (TOG) 36(6), 1–13 (2017). https://doi.org/10.1145/3130800.3130805

    Article  Google Scholar 

  11. Wang, K., Savva, M., Chang, A., Ritchie, D.: Deep convolutional priors for indoor scene synthesis. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018). https://doi.org/10.1145/3197517.3201362

    Article  Google Scholar 

  12. Ritchie, D., Wang, K., Lin, Y.: Fast and flexible indoor scene synthesis via deep convolutional generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6182–6190 (2019)

  13. Wang, K., Lin, Y., Weissmann, B., Savva, M., Chang, A., Ritchie, D.: Planit: planning and instantiating indoor scenes with relation graph and spatial prior networks. ACM Trans. Graph. (TOG) 38(4), 1–15 (2019). https://doi.org/10.1145/3306346.3322941

  14. Zhang, S., Zhang, S., **e, W., Luo, C., Fu, H.: Fast 3d indoor scene synthesis with discrete and exact layout pattern extraction. ar**v preprint ar**v:2002.00328 (2020). https://doi.org/10.48550/ar**v.2002.00328

  15. Paschalidou, D., Kar, A., Shugrina, M., Kreis, K., Geiger, A., Fidler, S.: Atiss: autoregressive transformers for indoor scene synthesis. Adv. Neural Inf. Process. Syst. 34, 12013 (2021)

    Google Scholar 

  16. Para, W., Guerrero, P., Kelly, T., Guibas, L., Wonka, P.: Generative layout modeling using constraint graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6690–6700 (2021)

  17. Wang, X., Yeshwanth, C., Niener, M.: Sceneformer: indoor scene generation with transformers. In: 2021 International Conference on 3D Vision (3DV), pp. 106–115 (2021). https://doi.org/10.48550/ar**v.2012.09793. IEEE

  18. Yang, H., Zhang, Z., Yan, S., Huang, H., Ma, C., Zheng, Y., Bajaj, C., Huang, Q.: Scene synthesis via uncertainty-driven attribute synchronization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5630–5640 (2021). https://doi.org/10.48550/ar**v.2108.13499

  19. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  20. Yang, B., Li, L., Song, C., Jiang, Z., Ling, Y.: Automatic interior layout with user-specified furniture. Comput. Graph. 94, 124–131 (2021). https://doi.org/10.1016/j.cag.2020.11.006

    Article  Google Scholar 

  21. Chaillou, S.: ArchiGAN: a generative stack for apartment building design. https://devblogs.nvidia.com/archigan-generative-stack-apartment-building-design/ (2019)

  22. Zhang, S., Han, Z., Lai, Y.-K., Zwicker, M., Zhang, H.: Stylistic scene enhancement GAN: mixed stylistic enhancement generation for 3d indoor scenes. Vis. Comput. 35, 1157–1169 (2019)

    Article  Google Scholar 

  23. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: Grass: generative recursive autoencoders for shape structures. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017). https://doi.org/10.1145/3072959.3073613

    Article  Google Scholar 

  24. Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra, N., Guibas, L.: Structurenet: hierarchical graph networks for 3d shape generation. ar**v preprint ar**v:1908.00575 (2019). https://doi.org/10.1145/3355089.3356527

  25. Mo, K., Zhu, S., Chang, A., Yi, L., Tripathi, S., Guibas, L., Su, H.: Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 909–918 (2019)

  26. Luo, A., Zhang, Z., Wu, J., Tenenbaum, J.: End-to-end optimization of scene layout. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3754–3763 (2020)

  27. Sun, Y., Miao, Y., Chen, J., Pajarola, R.: Pgcnet: patch graph convolutional network for point cloud segmentation of indoor scenes. Vis. Comput. 36, 2407–2418 (2020)

    Article  Google Scholar 

  28. **ao, Y., Lai, Y., Zhang, F., Li, C., Gao, L.: A survey on deep geometry learning: from a representation perspective. Comput. Vis. Med. 6(2), 113–133 (2020). https://doi.org/10.1007/S41095-020-0174-8

    Article  Google Scholar 

  29. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

  30. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ar**v preprint ar**v:1312.6114 (2013)

  31. Doersch, C.: Tutorial on variational autoencoders. ar**v preprint ar**v:1606.05908 (2016). https://doi.org/10.48550/ar**v.1606.05908

  32. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder–decoder for statistical machine translation. ar**v preprint ar**v:1406.1078 (2014)

  33. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

  34. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  35. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems 30 (2017)

  36. Parmar, G., Zhang, R., Zhu, J.-Y.: On buggy resizing libraries and surprising subtleties in fid calculation. ar**v preprint ar**v:2104.11222 (2021)

Download references

Funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY22F020013,“Digital+” Discipline Construction Project of Zhejiang Gongshang University (No. SZJ2022B009), the Natural Science Foundation of China (No.62172366).

Author information

Authors and Affiliations

Authors

Contributions

XY. Xuan performs the research and data processing, he is a major contributor to writing the manuscript. CS, his work focuses on visual computing, especially in the areas of neural networks analytics, software analytics, and room analytics. JQ. ** plays an important role in editing the manuscript. BL. Yang performs the literature research and designed the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chao Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, Y., Song, C., **, J. et al. CVAE-LAYOUT: automatic furniture layout with constraints. Vis Comput (2023). https://doi.org/10.1007/s00371-023-03204-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-023-03204-2

Keywords

Navigation