Log in

Prior-based privacy-assured compressed sensing scheme in cloud

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Compressed sensing (CS) is a popular signal processing technique. However, some of its performances still need to be improved for possible secure visual applications, including the optimization of the measurement matrix, privacy assurance, and the sparse recovery performance. To this end, we present prior-based measurement matrix design and sparse recovery algorithm for privacy-assured CS scheme in the cloud. More specifically, the measurement matrix is modeled by minimizing a Frobenius difference between the identity matrix and the Gram of the weighted sensing matrix. The gradient descent method is employed to derive the prior probability-weighted measurement matrix. Further, privacy-assured CS can be achieved by using within-row permutation and chaotic matrices. Finally, we also employ the prior information to enhance the accuracy of the sparse recovery algorithm by using prior probability-weighted orthogonal matching pursuit. Theoretical analyses and simulation results demonstrate that the proposed scheme can optimize measurement matrix, achieve privacy-assured CS, and improve sparse recovery performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Kuldeep, G., Zhang, Q.: Energy concealment based compressive sensing encryption for perfect secrecy for IoT. in: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6 (2020)

  2. Chen, H., Li, C., Wang, G., Li, X., Rahaman, M.M., Sun, H., Hu, W., Li, Y., Liu, W., Sun, C., Ai, S., Grzegorzek, M.: GasHis-Transformer: a multi-scale visual transformer approach for gastric histopathological image detection. Pattern Recognit. 130, 108827 (2022)

    Article  Google Scholar 

  3. Zhang, J., Li, C., Kosov, S., Grzegorzek, M., Shirahama, K., Jiang, T., Sun, C., Li, Z., Li, H.: LCU-Net: a novel low-cost U-Net for environmental microorganism image segmentation. Pattern Recognit. 115, 107885 (2021)

    Article  Google Scholar 

  4. Zheng, Y., Li, C., Zhou, X., Chen, H., Xu, H., Li, Y., Zhang, H., Li, X., Sun, H., Huang, X., Grzegorzek, M.: Application of transfer learning and ensemble learning in image-level classification for breast histopathology. Intell. Med. (2022)

  5. Zhang, Y., **ang, Y., Zhang, L.Y., Yang, L.-X., Zhou, J.: Efficiently and securely outsourcing compressed sensing reconstruction to a cloud. Inf. Sci. 496, 150–160 (2019)

    Article  Google Scholar 

  6. Joseph, G., Varshney, P.K.: Measurement bounds for compressed sensing in sensor networks with missing data. IEEE Trans. Signal Process. 69, 905–916 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  7. Hu, G., **ao, D., Wang, Y., **ang, T.: An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. J. Vis. Commun. Image Represent. 44, 116–127 (2017)

    Article  CAS  Google Scholar 

  8. Zhang, B., Liu, Y., Zhuang, J., Wang, K., Cao, Y.: Matrix permutation meets block compressed sensing. J. Vis. Commun. Image Represent. 60, 69–78 (2019)

    Article  Google Scholar 

  9. Zha, Z., Liu, X., Zhang, X., Chen, Y., Tang, L., Bai, Y., Wang, Q., Zhang, Z.: Compressed sensing image reconstruction via adaptive sparse nonlocal regularization. Vis. Comput. 34(1), 117–137 (2018)

    Article  Google Scholar 

  10. Jiang, Q., Li, S., Zhu, Z., Bai, H., He, X., de Lamare, R.C.: Design of compressed sensing system with probability-based prior information. IEEE Trans. Multimedia 22(3), 594–609 (2020)

    Article  Google Scholar 

  11. Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  12. Cui, M., Saurabh, P.: Sparse representation-based classification: orthogonal least squares or orthogonal matching pursuit? Pattern Recognit. Lett. 84, 120–126 (2016)

    Article  ADS  Google Scholar 

  13. Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2015)

    Article  Google Scholar 

  14. Ding, X., Chen, W., Wassell, I.J.: Joint sensing matrix and sparsifying dictionary optimization for tensor compressive sensing. IEEE Trans. Signal Process. 65(14), 3632–3646 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  15. Zhang, Y., Wang, P., Fang, L., He, X., Han, H., Chen, B.: Secure transmission of compressed sampling data using edge clouds. IEEE Trans. Ind. Inf. 16(10), 6641–6651 (2020)

    Article  Google Scholar 

  16. Li, G., Zhu, Z., Yang, D., Chang, L., Bai, H.: On projection matrix optimization for compressive sensing systems. IEEE Trans. Signal Process. 61(11), 2887–2898 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  17. Duarte-Carvajalino, J.M., Sapiro, G.: Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process. 18(7), 1395–1408 (2009)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  18. Zelnik-Manor, L., Rosenblum, K., Eldar, Y.C.: Sensing matrix optimization for block-sparse decoding. IEEE Trans. Signal Process. 59(9), 4300–4312 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  19. Abolghasemi, V., Ferdowsi, S., Sanei, S.: A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Process. 92(4), 999–1009 (2012)

    Article  Google Scholar 

  20. Chen, W., Rodrigues, M.R., Wassell, I.J.: On the use of unit-norm tight frames to improve the average MSE performance in compressive sensing applications. IEEE Signal Process. Lett. 19(1), 8–11 (2011)

    Article  ADS  Google Scholar 

  21. Cleju, N.: Optimized projections for compressed sensing via rank-constrained nearest correlation matrix. Appl. Comput. Harmon. Anal. 36(3), 495–507 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, B., Zhang, L., Kirubarajan, T., Rajan, S.: Projection matrix design using prior information in compressive sensing. Signal Process. 135, 36–47 (2017)

    Article  Google Scholar 

  23. Wang, C., Zhang, B., Ren, K., Roveda, J.M.: Privacy-assured outsourcing of image reconstruction service in cloud. IEEE Trans. Emerg. Top. Comput. 1(1), 166–177 (2013)

    Article  Google Scholar 

  24. Zhang, Y., **ang, Y., Zhang, L.Y.: Secure Compressive Sensing in Multimedia Data, Cloud Computing and IoT. Springer (2018)

  25. Kuldeep, G., Zhang, Q.: Compressive sensing based multi-class privacy-preserving cloud computing. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6 (2020)

  26. Scarlett, J., Evans, J.S., Dey, S.: Compressed sensing with prior information: Information-theoretic limits and practical decoders. IEEE Trans. Signal Process. 61(2), 427–439 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  27. Mota, J.F., Deligiannis, N., Rodrigues, M.R.: Compressed sensing with prior information: strategies, geometry, and bounds. IEEE Trans. Inf. Theory 63(7), 4472–4496 (2017)

    Article  MathSciNet  Google Scholar 

  28. Bai, H., Li, G., Li, S., Li, Q., Jiang, Q., Chang, L.: Alternating optimization of sensing matrix and sparsifying dictionary for compressed sensing. IEEE Trans. Signal Process. 63(6), 1581–1594 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  29. Elad, M.: Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  30. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(\rm L _{1}\) minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Strohmer, T., Heath, R.W., Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  Google Scholar 

  32. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  33. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  34. Marques, E.C., Maciel, N., Naviner, L., Cai, H., Yang, J.: A review of sparse recovery algorithms. IEEE Access 7, 1300–1322 (2018)

    Article  Google Scholar 

  35. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: Reconnet: non-iterative reconstruction of images from compressively sensed measurements. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 449–458 (2016)

  36. Huang, H., He, X., **ang, Y., Wen, W., Zhang, Y.: A compression-diffusion-permutation strategy for securing image. Signal Process. 150, 183–190 (2018)

    Article  Google Scholar 

  37. Zhang, Y., Wang, P., Huang, H., Zhu, Y., **ao, D., **ang, Y.: Privacy-assured FogCS: chaotic compressive sensing for secure industrial big image data processing in fog computing. IEEE Trans. Ind. Inf. 17(5), 3401–3411 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R &D Program of China (Grant No. 2020YFB1805400), the National Natural Science Foundation of China (Grant No. 62072063), and the Project Supported by Graduate Student Research and Innovation Foundation of Chongqing, China (Grant No. CYB 21062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di **ao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., **ao, D., Liang, J. et al. Prior-based privacy-assured compressed sensing scheme in cloud. Vis Comput 40, 2103–2117 (2024). https://doi.org/10.1007/s00371-023-02906-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02906-x

Keywords

Navigation