Log in

Dimensional reduction technique for the prediction of global and local responses of unidirectional composite with matrix nonlinearity and varying fiber packing geometry

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The problem associated with the computational homogenization of composite materials often results in expensive computational cost that prevents engineers from comprehensive study for better understanding of composite behaviors, especially when nonlinear effects are considered. While variation in local fiber arrangements has pronounced effect on damage initiation and failure mechanisms in composite, an attempt to reduce the computational cost for the parametric study of such a problem seems to be absent. This paper demonstrates the capability of a model order reduction (MOR) framework to accelerate the parametric study of the unidirectional composite with a plastic constitutive material model for matrix with the varying fiber distribution in the microstructure as the parameter of interest. The MOR framework used in this work is based on the construction of the reduced order basis (ROB) by proper orthogonal decomposition and then the reduced order model (ROM) by Galerkin projection. The concept of local ROB is incorporated which helps decreasing further the dimension of the ROM and, thus, the computational cost. The results from the RVE-based high-fidelity finite element analysis and from the ROM are compared to assess the efficiency and accuracy of the approach. Notable computational gain is achieved with the potential to improve further in the future work. The error in the global response is less than 10% while the local stress fields in the critical regions can be captured well which paves way for the extension to consider the process of damage initiation and evolution as the source of nonlinearity in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Data availability

The data supporting the findings of this study are available within the article. Raw data that support this study are available from the corresponding author, upon reasonable request.

References

  1. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: Trends and challenges. J Comput Appl Math 234:2175–2182. https://doi.org/10.1016/j.cam.2009.08.077

    Article  Google Scholar 

  2. Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equations and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44:497–524. https://doi.org/10.1016/0022-5096(96)00007-5

    Article  MathSciNet  Google Scholar 

  3. Vaughan TJ, McCarthy CT (2010) A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials. Compos Sci Technol 70(2):291–297. https://doi.org/10.1016/j.compscitech.2009.10.020

    Article  Google Scholar 

  4. Sanei SHR, Fertig RS (2015) Uncorrelated volume element for stochastic modeling of microstructures based on local fiber volume fraction variation. Compos Sci Technol 117:191–198. https://doi.org/10.1016/j.compscitech.2015.06.010

    Article  Google Scholar 

  5. Estevez R, Maire E, Franciosi P, Wilkinson D (1999) Effect of particle clustering on the strengthening versus damage rivalry in particulate reinforced elastic plastic materials: a 3-d analysis from a self-consistent modelling. Eur J Mech A Solid 18(5):785–804. https://doi.org/10.1016/S0997-7538(99)00123-0

    Article  Google Scholar 

  6. Bilger N, Auslender F, Bornert M, Michel J-C, Moulinec H, Suquet P, Zaoui A (2005) Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis. Int J Solids Struct 42(2):517–538. https://doi.org/10.1016/j.ijsolstr.2004.06.048

    Article  Google Scholar 

  7. Dautriat J, Bornert M, Gland N, Dimanov A, Raphanel J (2011) Localized deformation induced by heterogeneities in porous carbonate analysed by multi-scale digital image correlation. Tectonophysics 503(1–2):100–116. https://doi.org/10.1016/j.tecto.2010.09.025

    Article  Google Scholar 

  8. van der Meer FP (2016) Micromechanical validation of a mesomodel for plasticity in composites. Eur J Mech A/Solids 60:58–69. https://doi.org/10.1016/j.euromechsol.2016.06.008

    Article  MathSciNet  Google Scholar 

  9. Moraleda J, Segurado J, Llorca J (2009) Effect of interface fracture on the tensile deformation of fiber-reinforced elastomers. Int J Solids Struct 46:4287–4297. https://doi.org/10.1016/j.ijsolstr.2009.08.020

    Article  Google Scholar 

  10. Palizvan M, Abadi MT, Sadr MH (2020) Micromechanical damage behavior of fiber-reinforced composites under transverse loading including fiber-matrix debonding and matrix cracks. Int J Fract 226:145–160. https://doi.org/10.1007/s10704-020-00484-w

    Article  Google Scholar 

  11. Jiménez FL (2019) Variations in the distribution of local strain energy within different realizations of a representative volume element. Compos B Eng 176:107111. https://doi.org/10.1016/j.compositesb.2019.107111

    Article  Google Scholar 

  12. Chen X, Papathanasiou TD (2004) Interface stress distributions in transversely loaded continuous fiber composites: Parallel computation in multi-fiber rves using the boundary element method. Compos Sci Technol 64:1101–1114. https://doi.org/10.1016/j.compscitech.2003.07.006

    Article  Google Scholar 

  13. Melro AR, Camanho PP, Pinho ST (2008) Generation of random distribution of fibers in long-fiber reinforced composites. Compos Sci Technol 68:2092–2102. https://doi.org/10.1016/j.compscitech.2008.03.013

    Article  Google Scholar 

  14. Okereke MI, Akpoyomare AI (2013) A virtual framework for prediction of full-field elastic response of unidirectional composites. Comput Mater Sci 70:82–99. https://doi.org/10.1016/j.commatsci.2012.12.036

    Article  Google Scholar 

  15. Burkardt J, Gunzburger M, Lee HC (2006) Pod and cvt-based reduced-order modelling of navier-stokes flows. Comput. Methods Appl. Mech. Engrg. 196:337–355. https://doi.org/10.1016/j.cma.2006.04.004

    Article  MathSciNet  Google Scholar 

  16. Niroomandi S, Alfaro I, González D, Cueto E, Chinesta F (2012) Real-time simulation of surgery by reduced-order modeling and x-fem techniques. Int. J. Numer. Methods Biomed. Eng. 28:574–588. https://doi.org/10.1002/cnm.1491

    Article  MathSciNet  Google Scholar 

  17. Zahr MJ, Avery P, Farhat C (2017) A multilevel projection-based model order reduction framework for nonlinear dynamic multiscale problems in structural and solid mechanics. Int J Numer Methods Eng 112:855–881. https://doi.org/10.1002/nme.5535

    Article  MathSciNet  Google Scholar 

  18. Yvonnet J, He QC (2007) The reduced model multiscale method (r3m) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341–368. https://doi.org/10.1016/j.jcp.2006.09.019

    Article  MathSciNet  Google Scholar 

  19. Soldner D, Brands B, Zabilhyan R, Steinmann P, Mergheim J (2017) A numerical study of different projection-based model reduction techniques applied to computational homogenisation. Comput Mech 60:613–625. https://doi.org/10.1007/s00466-017-1428-x

    Article  MathSciNet  Google Scholar 

  20. Ri JH, Ri UI, Hong HS (2021) Multiscale analysis of elastic–viscoplastic composite using a cluster-based reduced order model. Comp Struct 272:114209. https://doi.org/10.1016/j.compstruct.2021.114209

    Article  Google Scholar 

  21. Raschi M, Lloberas-Valls O, Huespe A, Oliver J (2021) High performance reduction technique for multiscale finite element modeling (hpr-fe\(^{2}\)): Towards industrial multiscale fe software. Comput Methods Appl Mech Eng 375:113580. https://doi.org/10.1016/j.cma.2020.113580

    Article  MathSciNet  Google Scholar 

  22. Liu Z, Wei H, Huang T, Wu C (2020) Intelligent multiscale simulation based on process-guided composite database. ar**v preprint ar**v:2003.09491

  23. Wei H, Wu CT, Hu W, Su TH, Oura H, Nishi M, Naito T, Chung S, Shen L (2023) Ls-dyna machine learning-based multiscale method for nonlinear modeling of short-fiber-reinforced composites. J Eng Mech 149(3):04023003. https://doi.org/10.1061/JENMDT.EMENG-6945

    Article  Google Scholar 

  24. Kunisch K, Volkwein S (2001) Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math 90:117–148. https://doi.org/10.1007/s002110100282

    Article  MathSciNet  Google Scholar 

  25. Schilders WHA, Vorst van der HA, Rommes J (eds.) (2008) Model order reduction : theory, research aspects and applications. Springer, Germany. https://doi.org/10.1007/978-3-540-78841-6

  26. Radermacher A, Bednarcyk BA, Stier B, Simon J, Zhou L, Reese S (2016) Displacement-based multiscale modeling of fiber-reinforced composites by means of proper orthogonal decomposition. Adv Model Simul Eng Sci 3(1):29. https://doi.org/10.1186/s40323-016-0082-8

    Article  Google Scholar 

  27. Ricks TM, Lacy TE Jr, Pineda EJ, Bednarcyk BA, Arnold SM (2016) Computationally efficient high-fidelity generalized method of cells micromechanics via order-reduction techniques. Compos Struct 156:2–9. https://doi.org/10.1016/j.compstruct.2016.05.093

    Article  Google Scholar 

  28. Ricks TM, Lacy TE, Bednarcyk BA, Robens-Radermacher A, Pinada EJ, Arnold SM (2018) Solution of the nonlinear high-fidelity generalized method of cells micromechanics relations via order-reduction techniques. Math Probl Eng. https://doi.org/10.1155/2018/3081078

    Article  Google Scholar 

  29. Fang F, Pain CC, Navon IM, Piggott MD, Gorman GJ, Allison PA, Goddard AJ (2009) Reduced-order modelling of an adaptive mesh ocean model. Int J Numer Meth Fluids 59:827–851. https://doi.org/10.1002/fld.1841

    Article  MathSciNet  Google Scholar 

  30. Gräßle C, Hinze M (2018) Pod reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations. Adv Comput Math 44:1941–1978. https://doi.org/10.1007/s10444-018-9620-x

    Article  MathSciNet  Google Scholar 

  31. Ullmann S, Rotkvic M, Lang J (2016) Pod-galerkin reduced-order modeling with adaptive finite element snapshots. J Comput Phys 325:244–258. https://doi.org/10.1016/j.jcp.2016.08.018

    Article  MathSciNet  Google Scholar 

  32. Chang C, Zhang Y, Wang H (2019) Micromechanical modeling of unidirectional composites with random fiber and interphase thickness distributions. Arch Appl Mech 89:2563–2575. https://doi.org/10.1007/s00419-019-01595-0

    Article  Google Scholar 

  33. Venkatesan KR, Chattopadhyay A (2021) Nonuniform transformation field analysis based reduced-order model of high-fidelity generalized method of cells. Comp Struct 275:114365. https://doi.org/10.1016/j.compstruct.2021.114365

    Article  Google Scholar 

  34. Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc A Math Phys Eng Sci 326(1565):131–147. https://doi.org/10.1098/rspa.1972.0001

    Article  Google Scholar 

  35. Ullah Z, Kaczmarczyk L, Pearce CJ (2017) Three-dimensional nonlinear micro/meso-mechanical response of the fibre-reinforced polymer composites. Comput Struct 161:204–214. https://doi.org/10.1016/j.compstruct.2016.11.059

    Article  Google Scholar 

  36. Dehghan M, Hooshyarfarzin B, Abbaszadeh M (2022) Numerical simulation based on a combination of finite-element method and proper orthogonal decomposition to prevent the groundwater contamination. Eng Comput 38(Suppl4):3445–3461. https://doi.org/10.1007/s00366-021-01439-y

    Article  Google Scholar 

  37. Monteiro E, Yvonnet J, He QC (2008) Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput Mater Sci 42:704–712. https://doi.org/10.1016/j.commatsci.2007.11.001

    Article  Google Scholar 

  38. Jamnongpipatkul A, Sevenois RDB, Desmet W, Naets F, Gilabert FA (2023) Pod-based reduced model for the prediction of global and local elastic responses of fibre-reinforced polymer considering varying fibre distribution. Comput Mech 71:1041–1064. https://doi.org/10.1007/s00466-023-02286-y

    Article  MathSciNet  Google Scholar 

  39. Pyrz R (1994) Correlation of microstructure variability and local stress field in two-phase materials. Mater Sci Eng A177:253–259. https://doi.org/10.1016/0921-5093(94)90497-9

    Article  Google Scholar 

  40. Paul-Dubois-Taine A, Amsallem D (2015) An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. Int J Numer Methods Eng 102(5):1262–1292. https://doi.org/10.1002/nme.4759

    Article  MathSciNet  Google Scholar 

  41. Brands B, Mergheim J, Steinmann P (2016) Reduced-order modelling for linear heat conduction with parametrised moving heat. GAMM-Mitt 39(2):170–188. https://doi.org/10.1002/gamm.201610011

    Article  Google Scholar 

  42. He W, Avery P, Farhat C (2020) In situ adaptive reduction of nonlinear multiscale structural dynamics models. Int J Numer Methods Eng 121:4971–4988. https://doi.org/10.1002/nme.6505

    Article  MathSciNet  Google Scholar 

  43. Hernández JA, Oliver J, Huespe AE, Caicedo MA, Cante JC (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149–189. https://doi.org/10.1016/j.cma.2014.03.011

    Article  MathSciNet  Google Scholar 

  44. Bui-Thanh T (2007) Model-constrained Optimization Methods for Reduction of Parameterized Large Scale Systems. PhD thesis, Massachusetts Institute of Technology

  45. Volkwein S, Kunisch K (2010) Optimal snapshot location for computing pod basis functions. ESAIM: Math Model Numer Anal 44:509–529. https://doi.org/10.1051/m2an/2010011

    Article  MathSciNet  Google Scholar 

  46. Goury O, Amsallem D, Bordas SPA, Liu WK, Kerfriden P (2016) Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to bayesian optimization. Comput Mech 58:213–234. https://doi.org/10.1007/s00466-016-1290-2

    Article  MathSciNet  Google Scholar 

  47. Bessa MA, Bostanabad R, Liu Z, Hu AWAD, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667. https://doi.org/10.1016/j.cma.2017.03.037

    Article  MathSciNet  Google Scholar 

  48. Nigro PSB, Anndif M, Teixeira Y, Pimenta PM, Wriggers P (2016) An adaptive model order reduction with quasi-newton method for nonlinear dynamical problems. Int J Numer Methods Eng 106(9):740–759. https://doi.org/10.1016/j.jcp.2016.08.018

    Article  MathSciNet  Google Scholar 

  49. Brockenbrough JR, Suresh S, Wienecke HA (1991) Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape. Acta Metall Mater 39(5):735–752. https://doi.org/10.1016/0956-7151(91)90274-5

    Article  Google Scholar 

  50. Hojo M, Mizuno M, Hobbiebrunken T, Adachi T, Tanaka M, Ha SK (2009) Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded ud-cfrp from viewpoint of failure initiation. Compos Sci Technol 69:1726–1734. https://doi.org/10.1016/j.compscitech.2008.08.032

    Article  Google Scholar 

  51. Haasdonk B, Ohlberger M (2011) Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. ESAIM: Math Model Numer Anal 17(2):145–161. https://doi.org/10.1080/13873954.2010.514703

    Article  MathSciNet  Google Scholar 

  52. Amsallem D, Hetmaniuk U (2015) A posteriori error estimators for linear reduced-order models using krylov-based integrators. Int J Numer Methods Eng 102:1238–1261. https://doi.org/10.1002/nme.4753

    Article  MathSciNet  Google Scholar 

  53. Grepl MA, Patera AT (2005) A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: Math Model Numer Anal 39(1):157–181. https://doi.org/10.1051/m2an:2005006

    Article  Google Scholar 

  54. Yang L, Yan Y, Liu Y, Ran Z (2012) Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos Sci Technol 72:1818–1825. https://doi.org/10.1016/j.compscitech.2012.08.001

    Article  Google Scholar 

  55. Wan L, Ismail Y, Zhu C, Zhu P, Sheng Y, Liu J, Yang D (2020) Computational micromechanics-based prediction of the failure of unidirectional composite lamina subjected to transverse and in-plane shear stress states. J Compos Mater 54(24):3637–3654. https://doi.org/10.1177/0021998320918015

    Article  Google Scholar 

  56. Vaughan TJ, McCarthy CT (2011) A micromechanical study on the effect of intra-ply properties on transverse shear fracture in fibre reinforced composites. Compos Part A Appl Sci Manuf 42(9):1217–1228. https://doi.org/10.1016/j.compositesa.2011.05.004

    Article  Google Scholar 

  57. Melro AR, Camanho PP, Pires FMA, Pinho ST (2013) Micromechanics analysis of polymer composites reinforced by unidirectional fibres: Part i - constitutive modelling. Int J Solids Struct 50(11):1897–1905. https://doi.org/10.1016/j.ijsolstr.2013.02.009

    Article  Google Scholar 

  58. Melro AR, Camanho PP, Pires FMA, Pinho ST (2013) Micromechanics analysis of polymer composites reinforced by unidirectional fibres: Part ii - micromechanial analyses. Int J Solids Struct 50(11):1906–1915. https://doi.org/10.1016/j.ijsolstr.2013.02.007

    Article  Google Scholar 

  59. Naya F, González C, Lopes CS, Van der Veen SFP (2017) Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Compos. Part A Appl Sci Manuf 92:146–157. https://doi.org/10.1016/j.compositesa.2016.06.018

    Article  Google Scholar 

  60. Mehdikhani M, Aravand M, Sabuncuoglu B, Callens MG, Lomov SV, Gorbatikh L (2016) Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Comp Struct 140:192–201. https://doi.org/10.1016/j.compstruct.2015.12.020

    Article  Google Scholar 

  61. Gljušćić M, Lanc D, Franulović M, Žerovnik A (2023) Microstructural analysis of the transverse and shear behavior of additively manufactured cfrp composite rves based on the phase-field fracture theory. J Compos Sci. https://doi.org/10.3390/jcs7010038

    Article  Google Scholar 

  62. Spronk SWF, Verboven E, Gilabert FA, Sevenois RDB, Garoz D, Kersemans M, Van Paepegem W (2018) Stress-strain synchronization for high strain rate tests on brittle composites. Polym Test 67:477–486. https://doi.org/10.1016/j.polymertesting.2018.02.008

    Article  Google Scholar 

  63. Fu P, Dafalias YF (2015) Relationship between void- and contact normal-based fabric tensors for 2d idealized granular materials. Int J Solids Struct 63:68–81. https://doi.org/10.1016/j.ijsolstr.2015.02.041

    Article  Google Scholar 

  64. Shertzer RH (2011) Fabric tensors and effective properites of granular materials with application to snow. Phd thesis, Montana State University, Bozeman MT, USA

  65. Moreno R, Borga M, Smedby Ö (2014) Techniques for computing fabric tensors: A review. In: Westin C-F, Vilanova A, Burgeth B (eds) Visualization and processing of tensors and higher order descriptors for multi-valued data. Springer, Berlin, pp 271–292. https://doi.org/10.1007/978-3-642-54301-2_12

    Chapter  Google Scholar 

  66. Voyiadjis GZ, Kattan PI (2006) Advances in Damage Mechanics: Metals and Metal Matrix Composites, with an Introduction to Fabric Tensors, 2nd edn. Elsevier, Oxford. https://doi.org/10.1016/B978-0-08-044688-2.X5000-0

  67. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Acad Sci Paris Ser I 339:667–672. https://doi.org/10.1016/j.crma.2004.08.006

    Article  MathSciNet  Google Scholar 

  68. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32:2737–2764. https://doi.org/10.1137/090766498

    Article  MathSciNet  Google Scholar 

  69. Hernández JA, Caicedo MA, Ferrer A (2017) Dimensional hyper-reduction of nonlinear finite element models via empirical cubature. Comput Methods Appl Mech Eng 313:687–722. https://doi.org/10.1016/j.cma.2016.10.022

    Article  MathSciNet  Google Scholar 

  70. Farhat C, Avery P, Chapman T, Cortial J (2014) Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int J Numer Methods Eng 98:625–662. https://doi.org/10.1002/nme.4668

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work leading to this paper has been funded by the SBO project "MOR4MDesign", which fits in the MacroModelMat (M3) research program, coordinated by Siemens (Siemens Digital Industries Software, Belgium), and funded by SIM (Strategic Initiative Materials in Flanders) and VLAIO (Flanders Innovation and Entrepreneurship). The authors are also grateful to Prof. Wim Van Paepegem for valuable discussions and supplementary managerial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jamnongpipatkul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamnongpipatkul, A., Naets, F. & Gilabert, F.A. Dimensional reduction technique for the prediction of global and local responses of unidirectional composite with matrix nonlinearity and varying fiber packing geometry. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-02024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-02024-9

Keywords

Navigation