Log in

Isogeometric analysis based mesh adaptation for time dependent problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This article presents a new algorithm designed to create a dynamic r-adaptive mesh within the framework of isogeometric analysis. The approach is based on the simultaneous computation of adaptive meshes using a nonlinear parabolic Monge–Ampere equation with a resolution of partial differential equations in multidimensional spaces. The technique ensures the absence of geometric boundary errors and is simple to implement, requiring the solution of only one Laplace scalar equation at each time step. It utilizes a fast diagonalization method that can be adapted to any dimension. Various numerical experiments were conducted to validate an original parabolic Monge–Ampere solver. The solver was respectively applied to Burgers, Allen–Cahn, and Cahn–Hilliard problems to demonstrate the efficiency of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Algorithm 3
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  2. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric Analysis, Toward Integration of CAD and FEA. John Wiley & Sons

  3. Gómez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197(49):4333–4352. https://doi.org/10.1016/j.cma.2008.05.003

    Article  MathSciNet  Google Scholar 

  4. Vuong A-V, Giannelli C, Jüttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200(49):3554–3567. https://doi.org/10.1016/j.cma.2011.09.004

    Article  MathSciNet  Google Scholar 

  5. Carraturo M, Giannelli C, Reali A, Vázquez R (2019) Suitably graded THB-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering 348, 660–679 https://doi.org/10.1016/j.cma.2019.01.044

  6. Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269, 471–514 https://doi.org/10.1016/j.cma.2013.09.014

  7. Wei X, Zhang Y, Liu L, Hughes TJR (2017) Truncated T-splines: Fundamentals and methods. Computer Methods in Applied Mechanics and Engineering 316, 349–372 https://doi.org/10.1016/j.cma.2016.07.020 . Special Issue on Isogeometric Analysis: Progress and Challenges

  8. Liu L, Casquero H, Gomez H, Zhang YJ (2016) Hybrid-degree weighted T-splines and their application in isogeometric analysis. Computers & Fluids 141, 42–53 https://doi.org/10.1016/j.compfluid.2016.03.020 . Advances in Fluid-Structure Interaction

  9. Xu G, Mourrain B, Duvigneau R, Galligo A (2011) Parameterization of computational domain in isogeometric analysis: methods and comparison. Comput Methods Appl Mech Eng 200(23):2021–2031. https://doi.org/10.1016/j.cma.2011.03.005

    Article  MathSciNet  Google Scholar 

  10. Xu G, Li B, Shu L, Chen L, Xu J, Khajah T (2019) Efficient r-adaptive isogeometric analysis with Winslow’s map** and monitor function approach. J Comput Appl Math 351, 186–197 https://doi.org/10.1016/j.cam.2018.11.003

  11. Hénap G, Szabó L (2017) On the configurational-force-based r-adaptive mesh refinement in isogeometric analysis. Finite Elements in Analysis and Design 124, 1–6 https://doi.org/10.1016/j.finel.2016.10.002

  12. Umesh Basappa AR, Reddy JN (2016) Adaptive isogeometric analysis based on a combined r-h strategy. Int J Comput Methods Eng Sci Mech 17(2):73–92. https://doi.org/10.1080/15502287.2016.1153171

    Article  MathSciNet  Google Scholar 

  13. Ji Y, Wang M-Y, Wang Y, Zhu C-G (2022) Curvature-based R-Adaptive Planar NURBS Parameterization Method for Isogeometric Analysis Using Bi-Level Approach. Computer-Aided Design 150, 103305 https://doi.org/10.1016/j.cad.2022.103305

  14. Habib SH, Kezrane C, Hachi BE (2023) Moving local mesh based on analysis-suitable T-splines and bézier extraction for extended isogeometric finite element analysis - Application to two-dimensional crack propagation. Finite Elements in Analysis and Design 213, 103854 https://doi.org/10.1016/j.finel.2022.103854

  15. Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222. https://doi.org/10.1016/j.cma.2011.11.022

    Article  MathSciNet  Google Scholar 

  16. Hennig P, Ambati M, De Lorenzis L, Kästner M (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334, 313–336 https://doi.org/10.1016/j.cma.2018.01.017

  17. Kumar M, Kvamsdal T, Johannessen KA (2015) Simple a posteriori error estimators in adaptive isogeometric analysis. Computers & Mathematics with Applications 70(7), 1555–1582 https://doi.org/10.1016/j.camwa.2015.05.031 . High-Order Finite Element and Isogeometric Methods

  18. Buffa A, Giannelli C (2016) Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence. Math Models Methods Appl Sci 26(01):1–25. https://doi.org/10.1142/S0218202516500019

    Article  MathSciNet  Google Scholar 

  19. Kumar M, Kvamsdal T, Johannessen KA (2017) Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 316, 1086–1156 https://doi.org/10.1016/j.cma.2016.11.014 . Special Issue on Isogeometric Analysis: Progress and Challenges

  20. Ghorashi SS, Valizadeh N, Mohammadi S, Rabczuk T (2015) T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures 147, 138–146 https://doi.org/10.1016/j.compstruc.2014.09.017 . CIVIL-COMP

  21. Bazilevs Y, Takizawa K, Tezduyar TE, Korobenko A, Kuraishi T, Otoguro Y (2023) Computational aerodynamics with isogeometric analysis. Journal of Mechanics 39, 24–39 https://doi.org/10.1093/jom/ufad002https://academic.oup.com/jom/article-pdf/doi/10.1093/jom/ufad002/49478788/ufad002.pdf

  22. Takizawa K, Tezduyar TE, Avsar R (2020) A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state. Computational Mechanics 65, 1567–1591 https://doi.org/10.1007/s00466-020-01835-z

  23. **e X, Yang A, Wang Y, Jiang N, Wang S (2021) Fully adaptive isogeometric topology optimization using MMC based on truncated hierarchical B-splines. Structural and Multidisciplinary Optimization 63, 2869–2887 https://doi.org/10.1007/s00158-021-02850-1

  24. Maestre J, Pallares J, Cuesta I, Scott MA (2017) A 3d isogeometric BE-FE analysis with dynamic remeshing for the simulation of a deformable particle in shear flows. Computer Methods in Applied Mechanics and Engineering 326, 70–101 https://doi.org/10.1016/j.cma.2017.08.003

  25. Bahari M, Habbal A, Ratnani A, Sonnendrücker E (2024) Adaptive Isogeometric Analysis using optimal transport and their fast solvers. Computer Methods in Applied Mechanics and Engineering 418, 116570 https://doi.org/10.1016/j.cma.2023.116570

  26. Lynch RE, Rice JR, Thomas DH (1964) Direct solution of partial difference equations by tensor product methods. Numerische Mathematik 6(1):185–199

    Article  MathSciNet  Google Scholar 

  27. Sangalli G, Tani M (2016) Isogeometric preconditioners based on fast solvers for the Sylvester equation. SIAM J Sci Comput 38(6):3644–3671

    Article  MathSciNet  Google Scholar 

  28. Budd CJ, Williams JF (2006) Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions. J Phys A 39(19):5425. https://doi.org/10.1088/0305-4470/39/19/S06

    Article  MathSciNet  Google Scholar 

  29. Budd CJ, Williams JF (2009) Moving Mesh Generation Using the Parabolic Monge-Ampère Equation. SIAM Journal on Scientific Computing 31(5):3438–3465. https://doi.org/10.1137/080716773

  30. N, GR, T, L (1993) Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces. SIAM, Philadelphia, USA

  31. R, J (1980) Review of A Practical Guide to Splines. Mathematics of Computation 34(149), 325–326. Accessed 2024-05-15

  32. Buffa A, Sangalli G, Vázquez R (2010) Isogeometric analysis in electromagnetics: B-splines approximation. Comput Methods Appl Mech Eng 199(17–20):1143–1152. https://doi.org/10.1016/j.cma.2009.12.002

    Article  MathSciNet  Google Scholar 

  33. Buffa A, Rivas J, Sangalli G, Vázquez R (2011) Isogeometric discrete differential forms in three dimensions. SIAM J. Numer Anal. 49(2):818–844

    Article  MathSciNet  Google Scholar 

  34. Sulman MM, Williams JF, Russell RD (2011) An efficient approach for the numerical solution of the monge-ampère equation. Appl Numer Math 61(3):298–307. https://doi.org/10.1016/j.apnum.2010.10.006

    Article  MathSciNet  Google Scholar 

  35. Huang W, Russell RD (2011) Adaptive Moving Mesh Methods. Applied mathematical sciences. Springer, New York, Heidelberg, London

    Book  Google Scholar 

  36. Huang W, Russell RD (1997) Analysis of moving mesh partial differential equations with spatial smoothing. SIAM J Numer Anal 34(3):1106–1126. https://doi.org/10.1137/S0036142993256441

    Article  MathSciNet  Google Scholar 

  37. Bourne E, Güçlü Y, Hadjout S, Ratnani A (2023) Pyccel: a Python-to-X transpiler for scientific high-performance computing. Journal of Open Source Software 8(83), 4991 https://doi.org/10.21105/joss.04991

  38. Collier N, Dalcin L, Pardo D, Calo VM (2013) The cost of continuity: performance of iterative solvers on isogeometric finite elements. SIAM J Sci Comput 35(2):767–784. https://doi.org/10.1137/120881038

    Article  MathSciNet  Google Scholar 

  39. Collier N, Pardo D, Dalcin L, Paszynski M, Calo VM (2012) The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers. Computer Methods in Applied Mechanics and Engineering 213-216, 353–361 https://doi.org/10.1016/j.cma.2011.11.002

  40. Huang W, Ren Y, Russell RD (1994) Moving Mesh Partial Differential Equations (MMPDES) Based on the Equidistribution Principle. SIAM J Numer Anal 31(3), 709–730. Accessed 2023-11-18

  41. Budd CJ, Huang W, Russell RD (1996) Moving mesh methods for problems with blow-up. SIAM J Sci Comput 17(2):305–327. https://doi.org/10.1137/S1064827594272025

    Article  MathSciNet  Google Scholar 

  42. Cao W, Huang W, Russell RD (2001) Comparison of two-dimensional r-adaptive finite element methods using various error indicators. Mathematics and Computers in Simulation 56(2):127–143. https://doi.org/10.1016/S0378-4754(01)00285-3. Method of lines

  43. Li R, Tang T, Zhang P (2002) A moving mesh finite element algorithm for singular problems in two and three space dimensions. J Comput Phys 177(2):365–393

    Article  MathSciNet  Google Scholar 

  44. Tang T (2005) Moving mesh methods for computational fluid dynamics. Contemp Math 383(8):141–173

    Article  MathSciNet  Google Scholar 

  45. Mackenzie JA, Robertson ML (2002) A moving mesh method for the solution of the one-dimensional phase-field equations. J Comput Phys 181(2):526–544. https://doi.org/10.1006/jcph.2002.7140

    Article  MathSciNet  Google Scholar 

  46. Beckett G, Mackenzie JA (2000) Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl Numer Math 35(2):87–109. https://doi.org/10.1016/S0168-9274(99)00065-3

    Article  MathSciNet  Google Scholar 

  47. Jones E, Oliphant T, Peterson P, et al (2001) Scipy: Open source scientific tools for Python

  48. Li Y, Lee HG, Jeong D, Kim J (2010) An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation. Comput Math Appl 60(6):1591–1606. https://doi.org/10.1016/j.camwa.2010.06.041

    Article  MathSciNet  Google Scholar 

  49. Kim Y, Ryu G, Choi Y (2021) Fast and accurate numerical solution of Allen–Cahn equation. Mathematical Problems in Engineering 2021, 1–12 https://doi.org/10.1155/2021/5263989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Bahari.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Financial interests

The authors have no relevant financial or non-financial interests to disclose.

Materials discussed

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahari, M., Habbal, A. & Ratnani, A. Isogeometric analysis based mesh adaptation for time dependent problems. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-02009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-02009-8

Keywords

Navigation