Log in

A general-purpose meshfree Kirchhoff–Love shell formulation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A thin shell formulation is developed for the approximation by a meshfree Reproducing Kernel Particle Method (RKPM). The formulation is derived from a degenerated shell approach where the structure is treated as a 3D solid subjected to kinematic constraints of the Kirchhoff–Love (KL) shell theory. To address the challenge of surface geometry representation in a meshfree method, a local parameterization using principal component analysis (PCA) is employed. Taylor-series expansion adapted to the shell formulation is developed to address the accuracy and stability issues of nodal quadrature. Several approaches that address membrane locking are also considered. The effectiveness of the proposed RKPM KL shell formulation is demonstrated using an extensive set of linear-elastic and finite-deformation inelastic test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914

    Article  MathSciNet  Google Scholar 

  2. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    Google Scholar 

  3. Benson DJ, Hallquist JO (1990) A single surface contact algorithm for the post-buckling analysis of shell structures. Comput Methods Appl Mech Eng 78(2):141–163

    Article  MathSciNet  Google Scholar 

  4. LST (2007) Corporation, LS-DYNA keyword user’s manual

  5. Ahmad S, Irons BM, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2(3):419–451

    Article  Google Scholar 

  6. Hughes TJ, Liu WK (1981) Nonlinear finite element analysis of shells: Part I. three-dimensional shells. Comput Methods Appl Mech Eng 26(3):331–362

    Article  Google Scholar 

  7. Belytschko T, Lin JI, Chen-Shyh T (1984) Explicit algorithms for the nonlinear dynamics of shells. Comput Methods Appl Mech Eng 42(2):225–251

    Article  Google Scholar 

  8. Belytschko T, Stolarski H, Liu WK, Carpenter N, Ong JS (1985) Stress projection for membrane and shear locking in shell finite elements. Comput Methods Appl Mech Eng 51(1–3):221–258

    Article  MathSciNet  Google Scholar 

  9. Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model Part I: Formulation and optimal parametrization. Comput Methods Appl Mech Eng 72(3):267–304

    Article  Google Scholar 

  10. Simo J, Fox D, Rifai M (1989) On a stress resultant geometrically exact shell model Part II: The linear theory; computational aspects. Comput Methods Appl Mech Eng 73(1):53–92

    Article  Google Scholar 

  11. Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model Part III: Computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79(1):21–70

    Article  Google Scholar 

  12. Benson DJ, Bazilevs Y, Hsu M-C, Hughes T (2010) Isogeometric shell analysis: the Reissner-Mindlin shell. Comput Methods Appl Mech Eng 199(5–8):276–289

    Article  MathSciNet  Google Scholar 

  13. Chen J-S, Wang D (2006) A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates. Int J Numer Methods Eng 68(2):151–172

    Article  Google Scholar 

  14. Peng Y, Zhang A, Ming F (2018) A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis. Comput Mech 62:309–321

    Article  MathSciNet  Google Scholar 

  15. Zhang Q, Li S, Zhang A-M, Peng Y, Yan J (2021) A peridynamic Reissner-Mindlin shell theory. Int J Numer Methods Eng 122(1):122–147

    Article  MathSciNet  Google Scholar 

  16. Krysl P, Chen J-S (2023) Benchmarking computational shell models. Arch Comput Methods Eng 30(1):301–315

    Article  Google Scholar 

  17. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  Google Scholar 

  18. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MathSciNet  Google Scholar 

  19. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  Google Scholar 

  20. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  Google Scholar 

  21. Wang D, Wang J, Wu J (2020) Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of kirchhoff plates. Comput Mech 65(3):877–903

    Article  MathSciNet  Google Scholar 

  22. Guan P, Chi S, Chen J, Slawson T, Roth M (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047

    Article  Google Scholar 

  23. Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143(4):04017001

    Article  Google Scholar 

  24. Wang J, Zhou G, Hillman M, Madra A, Bazilevs Y, Du J, Su K (2021) Consistent immersed volumetric nitsche methods for composite analysis. Comput Methods Appl Mech Eng 385:114042

    Article  MathSciNet  Google Scholar 

  25. Nguyen H, Wang J, Bazilevs Y (2024) A smooth crack-band model for anisotropic materials: Continuum theory and computations with the rkpm meshfree method. Int J Solids Struct 112:618

    Google Scholar 

  26. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33(20–22):3057–3080

    Article  Google Scholar 

  27. Noguchi H, Kawashima T, Miyamura T (2000) Element free analyses of shell and spatial structures. Int J Numer Methods Eng 47(6):1215–1240

    Article  Google Scholar 

  28. Rabczuk T, Areias P, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72(5):524–548

    Article  MathSciNet  Google Scholar 

  29. Behzadinasab M, Alaydin M, Trask N, Bazilevs Y (2022) A general-purpose, inelastic, rotation-free Kirchhoff-Love shell formulation for peridynamics. Comput Methods Appl Mech Eng 389:114422

    Article  MathSciNet  Google Scholar 

  30. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  31. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons, Berlin

    Book  Google Scholar 

  32. Kiendl J, Hsu M-C, Wu MC, Reali A (2015) Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303

    Article  MathSciNet  Google Scholar 

  33. Ambati M, Kiendl J, De Lorenzis L (2018) Isogeometric Kirchhoff-Love shell formulation for elasto-plasticity. Comput Methods Appl Mech Eng 340:320–339

    Article  MathSciNet  Google Scholar 

  34. Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Comput Methods Appl Mech Eng 312:374–394

    Article  MathSciNet  Google Scholar 

  35. Proserpio D, Ambati M, De Lorenzis L, Kiendl J (2021) Phase-field simulation of ductile fracture in shell structures. Comput Methods Appl Mech Eng 385:114019

    Article  MathSciNet  Google Scholar 

  36. Deng X, Korobenko A, Yan J, Bazilevs Y (2015) Isogeometric analysis of continuum damage in rotation-free composite shells. Comput Methods Appl Mech Eng 284:349–372

    Article  MathSciNet  Google Scholar 

  37. Bazilevs Y, Pigazzini M, Ellison A, Kim H (2018) A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear. Comput Mech 62:563–585

    Article  MathSciNet  Google Scholar 

  38. Pigazzini M, Bazilevs Y, Ellison A, Kim H (2018) A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part II: impact modeling. Comput Mech 62:587–601

    Article  MathSciNet  Google Scholar 

  39. Benson DJ, Bazilevs Y, Hsu M-C, Hughes T (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200(13–16):1367–1378

    Article  MathSciNet  Google Scholar 

  40. Benson D, Hartmann S, Bazilevs Y, Hsu M-C, Hughes T (2013) Blended isogeometric shells. Comput Methods Appl Mech Eng 255:133–146

    Article  MathSciNet  Google Scholar 

  41. Alaydin MD, Benson DJ, Bazilevs Y (2021) An updated lagrangian framework for isogeometric Kirchhoff-Love thin-shell analysis. Comput Methods Appl Mech Eng 384:113977

    Article  MathSciNet  Google Scholar 

  42. Alaydin M, Behzadinasab M, Bazilevs Y (2022) Isogeometric analysis of multilayer composite shell structures: Plasticity, damage, delamination and impact modeling. Int J Solids Struct 252:111782

    Article  Google Scholar 

  43. Alaydin MD, Bazilevs Y (2023) Multilayer shells interacting through friction. J Appl Mech 90(12):121012

    Article  Google Scholar 

  44. Hosseini S, Remmers JJ, Verhoosel CV, De Borst R (2013) An isogeometric solid-like shell element for nonlinear analysis. Int J Numer Methods Eng 95(3):238–256

    Article  MathSciNet  Google Scholar 

  45. Stolarski H, Belytschko T (1982) Membrane locking and reduced integration for curved elements. J Appl Mech 49(1):172–176

    Article  Google Scholar 

  46. Casquero H, Golestanian M (2022) Removing membrane locking in quadratic NURBS-based discretizations of linear plane Kirchhoff rods: CAS elements. Comput Methods Appl Mech Eng 399:115354

    Article  MathSciNet  Google Scholar 

  47. Huang H-C (1987) Membrane locking and assumed strain shell elements. Comput Struct 27(5):671–677

    Article  Google Scholar 

  48. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139(1–4):49–74

    Article  MathSciNet  Google Scholar 

  49. Liu WK, Ong JS-J, Uras RA (1985) Finite element stabilization matrices-a unification approach. Comput Methods Appl Mech Eng 53(1):13–46

    Article  MathSciNet  Google Scholar 

  50. Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107(7):603–630

    Article  MathSciNet  Google Scholar 

  51. Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for FEM, IGA and meshfree methods. Comput Methods Appl Mech Eng 373:113521

    Article  MathSciNet  Google Scholar 

  52. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometrics Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  53. Trask N, Kuberry P (2020) Compatible meshfree discretization of surface PDEs. Comput Particle Mech 7(2):271–277

    Article  Google Scholar 

  54. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  Google Scholar 

  55. Wang J, Behzadinasab M, Li W, Bazilevs Y (2024) A stable formulation of correspondence-based peridynamics with a computational structure of a method using nodal integration. Int J Numer Methods Eng 125(11):e7465

    Article  MathSciNet  Google Scholar 

  56. Li W, Moutsanidis G, Behzadinasab M, Hillman M, Bazilevs Y (2022) Reduced quadrature for finite element and isogeometric methods in nonlinear solids. Comput Methods Appl Mech Eng 399:115389

    Article  MathSciNet  Google Scholar 

  57. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Article  Google Scholar 

  58. Johnson GC, Bammann DJ (1984) A discussion of stress rates in finite deformation problems. Int J Solids Struct 20(8):725–737

    Article  Google Scholar 

  59. Flanagan D, Taylor L (1987) An accurate numerical algorithm for stress integration with finite rotations. Comput Methods Appl Mech Eng 62(3):305–320

    Article  Google Scholar 

  60. Simo JC, Hughes TJ (2006) Computational inelasticity. Springer Science & Business Media, Berlin

    Google Scholar 

  61. Bischoff M, Bletzinger K-U, Wall WA, Ramm E (2004) Models and Finite Elements for Thin-Walled Structures. John Wiley & Sons, Berlin

    Book  Google Scholar 

  62. Bazilevs Y, Hsu M-C, Benson DJ, Sankaran S, Marsden AL (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89

    Article  MathSciNet  Google Scholar 

  63. Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. John wiley & Sons, Berlin

    Google Scholar 

  64. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of kirchhoff-love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199(37–40):2403–2416

    Article  MathSciNet  Google Scholar 

  65. Raknes S, Deng X, Bazilevs Y, Benson D, Mathisen K, Kvamsdal T (2013) Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells. Comput Methods Appl Mech Eng 263:127–143

    Article  MathSciNet  Google Scholar 

  66. Guo Y, Zou Z, Ruess M (2021) Isogeometric multi-patch analyses for mixed thin shells in the framework of non-linear elasticity. Comput Methods Appl Mech Eng 380:113771

    Article  MathSciNet  Google Scholar 

  67. Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546

    Article  MathSciNet  Google Scholar 

  68. Belytschko T, Yeh I (1993) The splitting pinball method for contact-impact problems. Comput Methods Appl Mech Eng 105(3):375–393

    Article  Google Scholar 

  69. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJ (2015) An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    Article  MathSciNet  Google Scholar 

  70. Bower AF (2009) Applied mechanics of solids. CRC Press, Berlin

    Book  Google Scholar 

  71. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1257–1275

    Article  MathSciNet  Google Scholar 

  72. Behzadinasab M, Trask N, Bazilevs Y (2021) A unified, stable and accurate meshfree framework for peridynamic correspondence modeling-Part I: Core methods. J Peridynam Nonlocal Model 3(1):24–45

    Article  MathSciNet  Google Scholar 

  73. Wang D, Wang J, Wu J (2018) Superconvergent gradient smoothing meshfree collocation method. Comput Methods Appl Mech Eng 340:728–766

    Article  MathSciNet  Google Scholar 

  74. Hillman M, Pasetto M, Zhou G (2020) Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation. Comput Particle Mech 7(2):435–469

    Article  Google Scholar 

  75. Wang J, Hillman M (2024) Upwind reproducing kernel collocation method for convection-dominated problems. Comput Methods Appl Mech Eng 420:116711

    Article  MathSciNet  Google Scholar 

  76. Han W, Meng X (2001) Error analysis of the reproducing kernel particle method. Comput Methods Appl Mech Eng 190(46–47):6157–6181

    Article  MathSciNet  Google Scholar 

  77. Wu J, Wang D (2021) An accuracy analysis of galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631

    Article  MathSciNet  Google Scholar 

  78. Scordelis A, Lo K (1964) Computer analysis of cylindrical shells. J Am Concrete Inst 61(5):539–562

    Google Scholar 

  79. Areias PM, Ritto-Corrêa MC, Martins JA (2010) Finite strain plasticity, the stress condition and a complete shell model. Comput Mech 45:189–209

    Article  MathSciNet  Google Scholar 

  80. Tarigopula V, Langseth M, Hopperstad OS, Clausen AH (2006) Axial crushing of thin-walled high-strength steel sections. Int J Impact Eng 32(5):847–882

    Article  Google Scholar 

  81. Kazancı Z, Bathe K-J (2012) Crushing and crashing of tubes with implicit time integration. Int J Impact Eng 42:80–88

    Article  Google Scholar 

  82. Peng Y-X, Zhang A-M, Ming F-R (2021) Numerical simulation of structural damage subjected to the near-field underwater explosion based on sph and rkpm. Ocean Eng 222:108576

    Article  Google Scholar 

  83. Parisch H (1979) A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration. Comput Methods Appl Mech Eng 20(3):323–350

    Article  Google Scholar 

  84. Armero F, Valverde J (2012) Invariant hermitian finite elements for thin Kirchhoff rods. I: The linear plane case. Comput Methods Appl Mech Eng 213:427–457

    Article  MathSciNet  Google Scholar 

  85. Wang J, Hillman M, Wilmes D, Magallanes J, Bazilevs, Y (2024) Smoothed naturally stabilized RKPM for non-linear explicit dynamics with novel stress gradient update. Comput Mech, https://doi.org/10.1007/s00466-024-02494-0.

Download references

Acknowledgements

This work was supported through the ONR Grant No. N00014-21-1-2670. J. Wang was also supported by the Hibbitt Postdoctoral Fellowship in the School of Engineering at Brown University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Bazilevs, Y. A general-purpose meshfree Kirchhoff–Love shell formulation. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01989-x

Keywords

Navigation