Log in

Nanofluids thermal conductivity prediction applying a novel hybrid data-driven model validated using Monte Carlo-based sensitivity analysis

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Accurate estimation of the thermal conductivity of nanofluids plays a key role in industrial heat transfer applications. Currently available experimental and empirical relationships can be used to estimate thermal conductivity. However, since the environmental conditions and properties of the nanofluids constituents are not considered these models cannot provide the expected accuracy and reliability for researchers. In this research, a robust hybrid artificial intelligence model was developed to accurately predict wide variety of relative thermal conductivity of nanofluids. In the new approach, the improved simulated annealing (ISA) was used to optimize the parameters of the least-squares support vector machine (LSSVM-ISA). The predictive model was developed using a data bank, consist of 1800 experimental data points for nanofluids from 32 references. The volume fraction, average size and thermal conductivity of nanoparticles, temperature and thermal conductivity of base fluid were selected as influent parameters and relative thermal conductivity was chosen as the output variable. In addition, the obtained results from the LSSVM-ISA were compared with the results of the radial basis function neural network (RBF-NN), K-nearest neighbors (KNN), and various existing experimental correlations models. The statistical analysis shows that the performance of the proposed hybrid predictor model for testing stage (R = 0.993, RMSE = 0.0207) is more reliable and efficient than those of the RBF-NN (R = 0.970, RMSE = 0.0416 W/m K), KNN (R = 0.931, RMSE = 0.068 W/m K) and all of the existing empirical correlations for estimating thermal conductivity of wide variety types of nanofluids. Finally, robustness and convergence analysis were conducted to evaluate the model reliability. A comprehensive sensitivity analysis using Monte Carlo simulation was carried out to identify the most significant variables of the developed models affecting the thermal conductivity predictions of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C MC(N):

Mean convergence function

D p :

Particle diameter, nm

I A :

Index of agreement

k bf :

Thermal conductivity of base fluid, w/m K

k p :

Thermal conductivity of nanoparticle, w/m K

K r :

Relative thermal conductivity (–)

MAPE:

Mean absolute percentage error

NC MC(N):

Normalized convergence function

R :

Correlation coefficient

RAE:

Relative absolute error

RMSE:

Root mean square error, w/m K

T :

Temperature, °K

\(\rho\) :

Density of the nanoparticles, g/cm3

\(\phi\) :

Nanoparticle volume fraction (%)

bf:

Base fluid

i:

Nanoparticle ID

nf:

Nanofluid

np:

Nanoparticle

p:

Particles

r:

Relative

References

  1. Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    MATH  Google Scholar 

  2. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-newtonian flows. In: Singer DA, Wang Hp (eds) American Society of Mechanical Engineers, New York, pp 99–105

  3. Alawi OA, Sidik NAC, **an HW, Kean TH, Kazi SN (2018) Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf 116:1314–1325

    Google Scholar 

  4. Mugilan T, Sidik NAC, Japar WMAA (2017) The use of smart material of nanofluid for heat transfer enhancement in microtube with helically spiral rib and groove. Revolution 2:2

    Google Scholar 

  5. Sajid MU, Ali HM (2018) Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf 126:211–234

    Google Scholar 

  6. Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Exp Therm Fluid Sci 33(4):706–714

    Google Scholar 

  7. Aybar HŞ, Sharifpur M, Azizian MR, Mehrabi M, Meyer JP (2015) A review of thermal conductivity models for nanofluids. Heat Transf Eng 36(13):1085–1110

    Google Scholar 

  8. Bahrami A, Monjezi M, Goshtasbi K, Ghazvinian A (2011) Prediction of rock fragmentation due to blasting using artificial neural network. Eng Comput 27(2):177–181

    Google Scholar 

  9. Zhang X, Meng G, Wang Z (2020) Experimental study on flow and heat transfer characteristics of SiC–water nanofluids in micro-cylinder-groups. Int J Heat Mass Transf 147:118971

    Google Scholar 

  10. Sridhar S, Karuppasamy R, Sivakumar G (2020) Experimental investigation of heat transfer enhancement of shell and tube heat exchanger using SnO2–water and Ag–water nanofluids. J Therm Sci Eng Appl 12(4)

  11. Sundari KG, Asirvatham LG, Marshal JJ, Kumar TMN, Sahu M (2020) Experimental investigations of glycerin/Al2O3 nanofluid in the hydrodynamically develo** region for automotive cooling applications. In: Advances in materials and manufacturing engineering. Springer, Germany, pp 541–547

  12. Li Z, Asadi S, Karimipour A, Abdollahi A, Tlili I (2020) Experimental study of temperature and mass fraction effects on thermal conductivity and dynamic viscosity of SiO2-oleic acid/liquid paraffin nanofluid. Int Commun Heat Mass Transf 110:104436

    Google Scholar 

  13. Shah SNA, Shahabuddin S, Sabri MFM, Salleh MFM, Ali MA, Hayat N, Sidik NAC, Samykano M, Saidur R (2020) Experimental investigation on stability, thermal conductivity and rheological properties of rGO/ethylene glycol based nanofluids. Int J Heat Mass Transf 150:118981

    Google Scholar 

  14. Yu W, **e H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1

    Google Scholar 

  15. Sidik NAC, Jamil MM, Japar WMAA, Adamu IM (2017) A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sustain Energy Rev 80:1112–1122

    Google Scholar 

  16. Theres Baby T, Sundara R (2013) Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid. AIP Adv 3(1):012111

    Google Scholar 

  17. Ahmadi MH, Mirlohi A, Nazari MA, Ghasempour R (2018) A review of thermal conductivity of various nanofluids. J Mol Liq 265:181–188

    Google Scholar 

  18. Tawfik MM (2017) Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev 75:1239–1253

    Google Scholar 

  19. Hamilton RL, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191

    Google Scholar 

  20. Bhattacharya P, Saha S, Yadav A, Phelan P, Prasher R (2004) Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 95(11):6492–6494

    Google Scholar 

  21. Yu W, Choi S (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1–2):167–171

    Google Scholar 

  22. Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag 52(1):789–793

    Google Scholar 

  23. Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99(8):084308

    Google Scholar 

  24. Lee S, Choi S-S, Li S, Eastman J (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289

    Google Scholar 

  25. **e H, Wang J, ** T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–4572

    Google Scholar 

  26. Patel HE, Das SK, Sundararajan T, Sreekumaran-Nair A, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933

    Google Scholar 

  27. Meyer JP, Adio SA, Sharifpur M, Nwosu PN (2016) The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng 37(5):387–421

    Google Scholar 

  28. Afrand M, Toghraie D, Sina N (2016) Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf 75:262–269

    Google Scholar 

  29. Shahsavar A, Bahiraei M (2017) Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol 318:441–450

    Google Scholar 

  30. Papari MM, Yousefi F, Moghadasi J, Karimi H, Campo A (2011) Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. Int J Therm Sci 50(1):44–52

    Google Scholar 

  31. Hojjat M, Etemad SG, Bagheri R, Thibault J (2011) Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network. Int J Heat Mass Transf 54(5–6):1017–1023

    MATH  Google Scholar 

  32. Wang X, Yang ZJ, Yates J, Jivkov A, Zhang C (2015) Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores. Constr Build Mater 75:35–45

    Google Scholar 

  33. Sharifpur M, Adio SA, Meyer JP (2015) Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transf 68:208–219

    Google Scholar 

  34. Mehrabi M, Sharifpur M, Meyer JP (2012) Application of the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina–water nanofluids. Int Commun Heat Mass Transf 39(7):971–977

    Google Scholar 

  35. Alarifi IM, Nguyen HM, Naderi Bakhtiyari A, Asadi A (2019) Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/oil hybrid nanofluid. Materials 12(21):3628

    Google Scholar 

  36. Zendehboudi A, Saidur R, Mahbubul I, Hosseini S (2019) Data-driven methods for estimating the effective thermal conductivity of nanofluids: a comprehensive review. Int J Heat Mass Transf 131:1211–1231

    Google Scholar 

  37. Jamei M, Ahmadianfar I (2020) A rigorous model for prediction of viscosity of oil-based hybrid nanofluids. Physica A Stat Mech Appl 124827

  38. Asadi A, Bakhtiyari AN, Alarifi IM (2020) Predictability evaluation of support vector regression methods for thermophysical properties, heat transfer performance, and pum** power estimation of MWCNT/ZnO–engine oil hybrid nanofluid. Eng Comput

  39. Kamiński M, Ossowski RL (2014) Prediction of the effective parameters of the nanofluids using the generalized stochastic perturbation method. Phys A 393:10–22

    MathSciNet  MATH  Google Scholar 

  40. Kamiński M, Kleiber M (2000) Numerical homogenization of N-component composites including stochastic interface defects. Int J Numer Methods Eng 47(5):1001–1027

    MathSciNet  MATH  Google Scholar 

  41. Aminian A (2016) Predicting the effective thermal conductivity of nanofluids for intensification of heat transfer using artificial neural network. Powder Technol 301:288–309

    Google Scholar 

  42. Ahmadloo E, Azizi S (2016) Prediction of thermal conductivity of various nanofluids using artificial neural network. Int Commun Heat Mass Transf 74:69–75

    Google Scholar 

  43. Zhang S, Ge Z, Fan X, Huang H, Long X (2019) Prediction method of thermal conductivity of nanofluids based on radial basis function. J Therm Anal Calorim 1–22

  44. Jamei M, Pourrajab R, Iman A, Noghrehabadi A (2020) Accurate prediction of thermal conductivity of ethylene glycol-based hybrid nanofluids using artificial intelligence techniques. Int Commun Heat Mass Transf 116

  45. Pourrajab R, Ahmadianfar I, Jamei M, Behbahani M (2020) A meticulous intelligent approach to predict thermal conductivity ratio of hybrid nanofluids for heat transfer applications. J Therm Anal Calorim 1–18

  46. Anderson TW, Darling DA (1952) Asymptotic theory of certain" goodness of fit" criteria based on stochastic processes. Ann Math Stat 23:193–212

  47. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611

    MathSciNet  MATH  Google Scholar 

  48. Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402

    Google Scholar 

  49. Bolboaca S-D, Jäntschi L (2006) Pearson versus Spearman Kendall’s tau correlation analysis on structure–activity relationships of biologic active compounds. Leonardo J Sci 5(9):179–200

    Google Scholar 

  50. Ahmadianfar I, Jamei M, Chu X (2020) A novel hybrid wavelet-locally weighted linear regression (W-LWLR) model for electrical conductivity (EC) prediction in water surface. J Contam Hydrol 232

  51. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  52. Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley, New York

    MATH  Google Scholar 

  53. Ji M, ** Z, Tang H (2006) An improved simulated annealing for solving the linear constrained optimization problems. Appl Math Comput 183(1):251–259

    MathSciNet  MATH  Google Scholar 

  54. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Google Scholar 

  55. Vapnik V (2013) The nature of statistical learning theory. Springer Science & Business Media, New York

    MATH  Google Scholar 

  56. Han H, Cui X, Fan Y, Qing H (2019) Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features. Appl Therm Eng 154:540–547

    Google Scholar 

  57. Zhu B, Ye S, Jiang M, Wang P, Wu Z, **e R, Chevallier J, Wei Y-M (2019) Achieving the carbon intensity target of China: a least squares support vector machine with mixture kernel function approach. Appl Energy 233:196–207

    Google Scholar 

  58. Barati-Harooni A, Najafi-Marghmaleki A (2016) An accurate RBF-NN model for estimation of viscosity of nanofluids. J Mol Liq 224:580–588

    Google Scholar 

  59. Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31

    Google Scholar 

  60. Bakire S, Yang X, Ma G, Wei X, Yu H, Chen J, Lin H (2018) Develo** predictive models for toxicity of organic chemicals to green algae based on mode of action. Chemosphere 190:463–470

    Google Scholar 

  61. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    MATH  Google Scholar 

  62. Garcia-Carretero R, Vigil-Medina L, Mora-Jimenez I, Soguero-Ruiz C, Barquero-Perez O, Ramos-Lopez J (2020) Use of a K-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese, hypertensive population. Med Biol Eng Comput 58:991–1002

  63. Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63(11):1309–1313

    Google Scholar 

  64. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Google Scholar 

  65. Gholizadeh M, Jamei M, Ahmadianfar I, Pourrajab R (2020) Prediction of nanofluids viscosity using random forest (RF) approach. Chemom Intell Lab Syst 201:104010

  66. Ahmadianfar I, Jamei M, Chu X (2019) Prediction of local scour around circular piles under waves using a novel artificial intelligence approach. Mar Georesour Geotechnol 1–12

  67. Dao DV, Ly H-B, Trinh SH, Le T-T, Pham BT (2019) Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials 12(6):983

    Google Scholar 

  68. Pham BT, Nguyen MD, Van Dao D, Prakash I, Ly H-B, Le T-T, Ho LS, Nguyen KT, Ngo TQ, Hoang V (2019) Development of artificial intelligence models for the prediction of compression coefficient of soil: an application of Monte Carlo sensitivity analysis. Sci Total Environ 679:172–184

    Google Scholar 

  69. Van Dao D, Adeli H, Ly H-B, Le LM, Le VM, Le T-T, Pham BT (2020) A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation. Sustainability 12(3):1–23

    Google Scholar 

  70. Guilleminot J, Le T, Soize C (2013) Stochastic framework for modeling the linear apparent behavior of complex materials: application to random porous materials with interphases. Acta Mech Sin 29(6):773–782

    MathSciNet  MATH  Google Scholar 

  71. Hattab N, Hambli R, Motelica-Heino M, Mench M (2013) Neural network and Monte Carlo simulation approach to investigate variability of copper concentration in phytoremediated contaminated soils. J Environ Manag 129:134–142

    Google Scholar 

  72. Mordechai S, Mark S (2011) Applications of Monte Carlo method in science and engineering. InTech

  73. Patel HE, Sundararajan T, Das SK (2010) An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res 12(3):1015–1031

    Google Scholar 

  74. Bruggeman VD (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der physic

  75. Mostafizur R, Bhuiyan M, Saidur R, Aziz AA (2014) Thermal conductivity variation for methanol based nanofluids. Int J Heat Mass Transf 76:350–356

    Google Scholar 

  76. Sundar LS, Ramana EV, Singh MK, Sousa AC (2014) Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass Transf 56:86–95

    Google Scholar 

  77. Burman P (1989) A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 76(3):503–514

    MathSciNet  MATH  Google Scholar 

  78. Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17(8):857–872

    Google Scholar 

  79. Sattar AM (2014) Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow. J Pipeline Syst Eng Pract 5(1):04013011

    Google Scholar 

  80. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76(6):061203

    Google Scholar 

  81. Edward J, Kenny JP, Gandhi RL (1977) Solid-liquid flow slurry pipeline transportation. Trans Tech Publ

  82. Fricke H (1953) The Maxwell–Wagner dispersion in a suspension of ellipsoids. J Phys Chem 57(9):934–937

    Google Scholar 

  83. Keyvani M, Afrand M, Toghraie D, Reiszadeh M (2018) An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: develo** a new correlation. J Mol Liq 266:211–217

    Google Scholar 

  84. Dehkordi RA, Esfe MH, Afrand M (2017) Effects of functionalized single walled carbon nanotubes on thermal performance of antifreeze: an experimental study on thermal conductivity. Appl Therm Eng 120:358–366

    Google Scholar 

  85. Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901

    Google Scholar 

  86. Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48(2):363–371

    Google Scholar 

  87. Nan C-W, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375(5–6):666–669

    Google Scholar 

  88. Godson L, Raja B, Lal DM, Wongwises S (2010) Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Exp Heat Transf 23(4):317–332

    Google Scholar 

  89. Murshed S, Leong K, Yang C (2006) A model for predicting the effective thermal conductivity of nanoparticle-fluid suspensions. Int J Nanosci 5(01):23–33

    Google Scholar 

  90. Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S (2014) Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim 118(1):287–294

    Google Scholar 

  91. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, New York

    MATH  Google Scholar 

  92. Zhang P (1993) Model selection via multifold cross validation. Ann Stat 299–313

  93. Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 34(2):210–216

    Google Scholar 

  94. Hussein AM, Bakar R, Kadirgama K, Sharma K (2013) Experimental measurement of nanofluids thermal properties. Int J Autom Mech Eng 7:850

    Google Scholar 

  95. Said Z, Saidur R, Rahim N (2016) Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. J Clean Prod 133:518–530

    Google Scholar 

  96. Al-Waeli AH, Chaichan MT, Kazem HA, Sopian K (2017) Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag 148:963–973

    Google Scholar 

  97. Zhao N, Li Z (2017) Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids. Materials 10(5):552

    Google Scholar 

  98. Esfe MH, Afrand M, Yan W-M, Akbari M (2015) Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int Commun Heat Mass Transf 66:246–249

    Google Scholar 

  99. Heyhat M, Kowsary F, Rashidi A, Momenpour M, Amrollahi A (2013) Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci 44:483–489

    Google Scholar 

  100. Vajjha RS, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf 52(21–22):4675–4682

    MATH  Google Scholar 

  101. Kazemi-Beydokhti A, Heris SZ, Moghadam N, Shariati-Niasar M, Hamidi A (2014) Experimental investigation of parameters affecting nanofluid effective thermal conductivity. Chem Eng Commun 201(5):593–611

    Google Scholar 

  102. Sundar LS, Singh MK, Sousa AC (2013) Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int Commun Heat Mass Transf 49:17–24

    Google Scholar 

  103. Pavlovic S, Bellos E, Loni R (2018) Exergetic investigation of a solar dish collector with smooth and corrugated spiral absorber operating with various nanofluids. J Clean Prod 174:1147–1160

    Google Scholar 

  104. Vajjha RS, Das DK, Kulkarni DP (2010) Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf 53(21–22):4607–4618

    Google Scholar 

  105. Hamid KA, Azmi W, Mamat R, Usri N, Najafi G (2015) Effect of temperature on heat transfer coefficient of titanium dioxide in ethylene glycol-based nanofluid. J Mech Eng Sci 8:1367–1375

    Google Scholar 

  106. Reddy MCS, Rao VV (2013) Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids. Int Commun Heat Mass Transf 46:31–36

    Google Scholar 

  107. Jiang H, Li H, Zan C, Wang F, Yang Q, Shi L (2014) Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim Acta 579:27–30

    Google Scholar 

  108. Alirezaie A, Hajmohammad MH, Ahangar MRH, Esfe MH (2018) Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. Appl Therm Eng 128:373–380

    Google Scholar 

  109. Esfe MH, Saedodin S, Mahian O, Wongwises S (2014) Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: effects of particle size, temperature, and concentration. Int Commun Heat Mass Transf 58:138–146

    Google Scholar 

  110. Akilu S, Baheta AT, Kadirgama K, Padmanabhan E, Sharma K (2019) Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluids. J Mol Liq 284:780–792

    Google Scholar 

  111. Lee SW, Park SD, Kang S, Bang IC, Kim JH (2011) Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf 54(1–3):433–438

    MATH  Google Scholar 

  112. Kang HU, Kim SH, Oh JM (2006) Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transf 19(3):181–191

    Google Scholar 

  113. Suganthi K, Manikandan S, Anusha N, Rajan K (2015) Cerium oxide–ethylene glycol nanofluids with improved transport properties: preparation and elucidation of mechanism. J Taiwan Inst Chem Eng 49:183–191

    Google Scholar 

  114. Mariano A, Pastoriza-Gallego MJ, Lugo L, Mussari L, Piñeiro MM (2015) Co3O4 ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density. Int J Heat Mass Transf 85:54–60

    Google Scholar 

  115. Sabiha M, Mostafizur R, Saidur R, Mekhilef S (2016) Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int J Heat Mass Transf 93:862–871

    Google Scholar 

  116. Esfe MH, Saedodin S, Mahian O, Wongwises S (2014) Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf 73:186–194

    Google Scholar 

  117. Soltanimehr M, Afrand M (2016) Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl Therm Eng 105:716–723

    Google Scholar 

  118. Omrani A, Esmaeilzadeh E, Jafari M, Behzadmehr A (2019) Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam Relat Mater 93:96–104

    Google Scholar 

  119. Said M, Sajid H, Alim MA, Saidur R, Rahim NA (2013) Experimental investigation of the thermophysical properties of Al2O3-nanofluid and its effect on a flat plate solar collector. Int Commun Heat Mass Transf 48:99–107

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jamei.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, A., Jamei, M., Ahmadianfar, I. et al. Nanofluids thermal conductivity prediction applying a novel hybrid data-driven model validated using Monte Carlo-based sensitivity analysis. Engineering with Computers 38 (Suppl 1), 815–839 (2022). https://doi.org/10.1007/s00366-020-01163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01163-z

Keywords

Navigation