Log in

Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The ability to understand and predict the effects of ocean warming (under realistic scenarios) on marine biota is of paramount importance, especially at the most vulnerable early life stages. Here we investigated the impact of predicted environmental warming (+3 °C) on the development, metabolism, heat shock response and antioxidant defense mechanisms of the early stages of the common octopus, Octopus vulgaris. As expected, warming shortened embryonic developmental time by 13 days, from 38 days at 18 °C to 25 days at 21 °C. Concomitantly, survival decreased significantly (~29.9 %). Size at hatching varied inversely with temperature, and the percentage of smaller premature paralarvae increased drastically, from 0 % at 18 °C to 17.8 % at 21 °C. The metabolic costs of the transition from an encapsulated embryo to a free planktonic form increased significantly with warming, and HSP70 concentrations and glutathione S-transferase activity levels were significantly magnified from late embryonic to paralarval stages. Yet, despite the presence of effective antioxidant defense mechanisms, ocean warming led to an augmentation of malondialdehyde levels (an indicative of enhanced ROS action), a process considered to be one of the most frequent cellular injury mechanisms. Thus, the present study provides clues about how the magnitude and rate of ocean warming will challenge the buffering capacities of octopus embryos and hatchlings’ physiology. The prediction and understanding of the biochemical and physiological responses to warmer temperatures (under realistic scenarios) is crucial for the management of highly commercial and ecologically important species, such as O. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarraberes FA, Dice JF (2001) Protein translocation across membranes. Biochim Biophys Acta 1513:1–24

    Article  CAS  PubMed  Google Scholar 

  • Anestis A, Lazou A, Pörtner HO, Michaelidis B (2007) Behavioural, metabolic and molecular stress responses of the marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol Reg Integr Comp Physiol 293:R911–R921

    Article  CAS  Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trend Ecol Evol 12:235–239

    Article  CAS  Google Scholar 

  • Bartol IK, Krueger PS, Stewart WJ, Thompson JT (2009) Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers. J Exp Biol 212:1506–1518

    Article  PubMed  Google Scholar 

  • Boletzky SV (1974) Elevage de Céphalopodes en aquarium. Vie Milieu 24:309–340

    Google Scholar 

  • Boletzky SV (1987) Embryonic phase. In: Boyle PR (ed) Cephalopod life cycles. Academic Press, London, pp 5–31

    Google Scholar 

  • Bouchaud O (1991) Energy consumption of the cuttlefish Sepia officinalis (mollusca: cephalopoda) during embryonic development, preliminary results. Bull Mar Sci 49:333–340

    Google Scholar 

  • Boyle P, Rodhouse PG (2005) Cephalopods. Ecology and fisheries. Blackwell Publishing, Oxford

    Google Scholar 

  • Buckley BA, Gracey AY, Somero GN (2006) The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis. J Exp Biol 209:2660–2677

    Article  CAS  PubMed  Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Ocean Mar Biol Ann Rev 49:1–42

    Google Scholar 

  • Calado R, Vitorino A, Dionísio G, Dinis MT (2007) A recirculated maturation system for marine ornamental decapods. Aquaculture 263:68–74

    Article  Google Scholar 

  • Cinti A, Barón PJ, Rivas AL (2004) The effects of environmental factors on the embryonic survival of the Patagonian squid Loligo gahi. J Exp Mar Biol Ecol 313:225–240

    Article  Google Scholar 

  • Cronin ER, Seymour RS (2000) Respiration of the eggs of the giant cuttlefish Sepia apama. Mar Biol 136:863–870

    Article  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Phys Rev 79:425–449

    CAS  Google Scholar 

  • Forsythe JW (1993) A working hypothesis of how seasonal temperature change may impact the field growth of young cephalopods. In: Okutami T, O’Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. Japan Tokai University Press, Tokyo, pp 133–143

    Google Scholar 

  • Forsythe JW, Van Heukelem WF (1987) Growth. In: PR B (ed) Cephalopod life cycles, vol II: comparative reviews. UK Academic Press, London, pp 135–156

    Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Comm 286:433–442

    Article  CAS  PubMed  Google Scholar 

  • Gething MJ (1997) Guidebook to molecular chaperones and protein-folding catalysts. Oxford University Press, New York

    Google Scholar 

  • Gutowska MA, Melzner F (2009) Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2. Mar Biol 156:515–519

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Hartl FU (1996) Molecular proteins in cellular protein folding. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hofmann GE, Somero GN (1996) Protein ubiquitination and stress protein synthesis in Mytilus trossulus occurs during recovery from tidal emersion. Mol Mar Biol Biotech 5:175–184

    CAS  Google Scholar 

  • Kamler E (2008) Resource allocation in yolk-feeding fish. Rev Fish Biol Fisheries 18:143–200

    Article  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early development stages of invertebrates. Mar Ecol-Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Mangold K, Boletsky SV (1973) New data on reproductive biology and growth of Octopus vulgaris. Mar Biol 19:7–12

    Article  Google Scholar 

  • McMahon JJ, Summers WC (1971) Temperature effects on the developmental rate of squid (Loligo pealei) embryos. Biol Bull 141:561–567

    Article  Google Scholar 

  • Melzner F, Bock C, Pörtner HO (2006) Temperature-dependent oxygen extraction from the ventilatory current and the costs of ventilation in the cephalopod Sepia officinalis. J Comp Physiol B 176:607–621

    Article  CAS  PubMed  Google Scholar 

  • Moreno A, dos Santos A, Piatkowski U, Santos AMP, Cabral H (2009) Distribution of cephalopod paralarvae in relation to the regional oceanography of the western Iberia. J Plankton Res 31:73–91

    Article  Google Scholar 

  • Naef A (1928) Fauna and Flora of the Bay of Napoles: Cephalopoda embryology. Part I vol II Monographia. Zoological Station, Napoles

  • Njemini R, Demanet C, Mets T (2005) Comparison of two ELISAs for the determination of Hsp70 in serum. J Immunol Method 306:176–182

    Article  CAS  Google Scholar 

  • O’Dor RK (1998) Can understanding squid life-history strategies and recruitment improve management? S Afr J Mar Sci 20:193–206

    Google Scholar 

  • Oliveira UO, Araújo ASR, Belló-Klein A, da Silva RSM, Kucharski LC (2005) Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata. Comp Biochem Physiol B 140:51–57

    Article  PubMed  Google Scholar 

  • Oosthuizen A, Roberts MJ, Sauer WHH (2002) Temperature effects on the embryonic development and hatching of the squid, Loligo vulgaris reynaudii. Bull Mar Sci 71:619–632

    Google Scholar 

  • Osovitz CJ, Hofmann GE (2005) Thermal history-dependent expression of the hsp70 gene in purple sea urchins: biogeographic patterns and the effect of temperature acclimation. J Exp Mar Biol Ecol 327:134–143

    Article  CAS  Google Scholar 

  • Parra G, Villanueva R, Yúfera M (2000) Respiration rates in late eggs and early hatchlings of common octopus, Octopus vulgaris. J Mar Biol Ass UK 80:557–558

    Article  Google Scholar 

  • Pimentel MS, Trübenbach K, Faleiro F, Boavida-Portugal J, Repolho T, Rosa R (2012) Impact of ocean warming on the early ontogeny of cephalopods: a metabolic approach. Mar Biol 159:2051–2059

    Article  Google Scholar 

  • Pörtner HO (2002) Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–691

    Article  PubMed  Google Scholar 

  • Prosser CL, Heath JE (1994) Environment and metabolic animal physiology. Wiley-Liss, New York

    Google Scholar 

  • Relvas P, Barton ED, Dubert J, Oliveira PB, Peliz A, da Silva JCB, Santos AMP (2007) Physical oceanography of the western Iberia ecosystem: latest views and challenges. Prog Oceanogr 74:149–173

    Article  Google Scholar 

  • Roberts M, Sauer WHH (1994) Environment: the key to understanding the South African chokka squid (Loligo vulgaris reynaudii) life cycle and fishery? Antarct Sci 6:249–258

    Article  Google Scholar 

  • Rodhouse PG, Nigmatullin CM (1996) Role as consumers. Philos Roy Soc B 351:1003–1022

    Article  Google Scholar 

  • Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Nat Acad Sci USA 105:20776–20780

    Article  CAS  PubMed  Google Scholar 

  • Rosa R, Gonzalez L, Dierssen HM, Seibel BA (2012a) Environmental determinants of latitudinal-size trends in cephalopod mollusks. Mar Ecol Prog Ser 464:153–165

    Google Scholar 

  • Rosa R, Pimentel M, Boavida-Portugal J, Teixeira T, Trübenbach K, Diniz MS (2012b) Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone invertebrate. PLoS ONE 7:e38282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosa R, Graham P, O′Dor R (2013a) Advances in squid biology, ecology and fisheries, vol I. Myopsid squids. Nova Publishers, New York, in press

  • Rosa R, Graham P, O′Dor R (2013b) Advances in squid biology, ecology and fisheries, vol II. Oegopsid squids. Nova Publishers, New York, in press

  • Rosa R, Trübenbach K, Repolho T, Pimentel M, Faleiro F, Boavida-Portugal J, Baptista M, Dionísio G, Leal M, Calado R, Pörtner HO (2013c) Lower hypoxia thresholds of cuttlefish life stages living in a warm acidified ocean. Proc R Soc B 280:20131695

    Article  PubMed  Google Scholar 

  • Sakurai Y, Bower JR, Nakamura Y, Yamamoto S, Watanabe K (1996) Effect of temperature on development and survival of Todarodes pacificus embryos and paralarvae. Am Malacol Bull 13:89–95

    Google Scholar 

  • Santos MB, Clarke MR, Pierce GJ (2001) Assessing the importance of cephalopods in the diets of marine mammals and other top predators: problems and solutions. Fish Res 52:121–139

    Article  Google Scholar 

  • Seibel BA (2007) On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). J Exp Biol 210:1–11

    Article  CAS  PubMed  Google Scholar 

  • Seibel BA, Rosa R, Trueblood L (2007) Cephalopod metabolism as a function of body size. In: Olson RJ, Young JW (eds) The role of squid in open ocean ecosystems. Global ocean ecosystem dynamics—climate impacts on oceanic top predators. GLOBEC Report 24, pp 9–10

  • Şen H (2003) Kalamar (Loligo vulgaris Lamarck, 1798) yumurtalarının embriyonik gelişimi ve inkübasyonu. Izmir, Türkiye

    Google Scholar 

  • Şen H (2004) A preliminary study on the effects of salinity on egg development of European squid (Loligo vulgaris Lamarck, 1798). Israeli J Aquacult Bamidgeh 56:95–101

    Google Scholar 

  • Şen H (2005) Temperature tolerance of loliginid squid (Loligo vulgaris Lamarck, 1798) eggs in controlled conditions. Turkish J Fish Aquat Sci 5:53–59

    Google Scholar 

  • Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Tucker JWJ (1998) Marine fish culture. Kluwer Academic Publishers, Massachusetts

    Book  Google Scholar 

  • Turner RL, Lawrence JM (1979) Volume and composition of echinoderm eggs: implications for the use of egg size in life-history models. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, pp 25–40

    Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  • Vecchione M (1991) Observations on the paralarval ecology of a euryhaline squid, Lolliguncula brevis (Cephalopoda: Loliginidae). Fish Bull (US) 89:515–521

    Google Scholar 

  • Vidal EAG, DiMarco FP, Wormuth JH, Lee PG (2002) Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bull Mar Sci 71:915–931

    Google Scholar 

  • Villanueva R (2000) Effect of temperature on statolith grow of the European squid Loligo vulgaris during early life. Mar Biol 136:449–460

    Article  Google Scholar 

  • Villanueva R, Nozais C, Boletzky SV (1995) The planktonic life of octopuses. Nature 377:107. doi:10.1038/377107a0

    Article  CAS  Google Scholar 

  • Villanueva R, Arkhipkin A, Jereb P, Lefkaditou E, Lipinski MR, Perales-Raya C, Riba J, Rocha F (2003) Embryonic life of the loliginid squid Loligo vulgaris: comparison between statoliths of Atlantic and Mediterranean populations. Mar Ecol Prog Ser 253:197–208

    Article  Google Scholar 

  • Wachter BD, Wolf G, Richard A, Decleir W (1988) Regulation of respiration during juvenile development of Sepia officinalis (Mollusca: Cephalopoda). Mar Biol 97:365–371

    Article  Google Scholar 

  • Waluda CM, Rodhouse PG, Trahan PN (2001) Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability. Mar Biol 139:671–679

    Article  Google Scholar 

  • Wolf G, Verheyen E, Vlaeminck A, Lemaire J, Decleir W (1985) Respiration of Sepia officinalis during embryonic and early juvenile life. Mar Biol 90:35–39

    Article  Google Scholar 

  • Wood JB, O’Dor RK (2000) Do larger cephalopods live longer? Effects of temperature and phylogeny on interspecific comparisons of age and size at maturity. Mar Biol 136:91–99

    Article  Google Scholar 

  • Worms J (1983) Loligo vulgaris. In: Boyle PR (ed) Cephalopod life cycles. Academic Press, London, pp 143–157

    Google Scholar 

  • Zielinski S, Pörtner HO (2000) Oxidative stress and antioxidative defense in cephalopods: a function of metabolic rate or age? Comp Biochem Physiol B 125:147–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Portuguese Foundation for Science and Technology (FCT) supported this study through project grants PTDC/BIA-BEC/103266/2008 and PTDC/MAR/0908066/2008 to R. Rosa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Rosa.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repolho, T., Baptista, M., Pimentel, M.S. et al. Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming. J Comp Physiol B 184, 55–64 (2014). https://doi.org/10.1007/s00360-013-0783-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0783-y

Keywords

Navigation