Log in

Numbats and aardwolves—how low is low? A re-affirmation of the need for statistical rigour in evaluating regression predictions

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Many comparative physiological studies aim to determine if a particular species differs from a prediction based on a linear allometric regression for other species. However, the judgment as to whether the species in question conforms to this allometric relationship is often not based on any formal statistical analysis. An appropriate statistical method is to compare the new species’ value with the 95% confidence limits for predicting an additional datum from the relationship for the other species. We examine the basal metabolic rate (BMR) of the termitivorous numbat (Myrmecobius fasciatus) and aardwolf (Proteles cristatus) to demonstrate the use of the 95% prediction limits to determine statistically if they have a lower-than-expected BMR compared to related species. The numbat’s BMR was 83.6% of expected from mass, but fell inside the 95% prediction limits for a further datum; a BMR < 72.5% of predicted was required to fall below the one-tail 95% prediction limits. The aardwolf had a BMR that was only 74.2% of predicted from the allometric equation, but it also fell well within the 95% prediction limits; a BMR of only 41.8% of predicted was necessary to fall below the one-tail 95% prediction limits. We conclude that a formal statistical approach is essential, although it is difficult to demonstrate that a single species statistically differs from a regression relationship for other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMR:

Basal metabolic rate

C:

Thermal conductance

EWL:

Evaporative water loss

FMR:

Field metabolic rate

MMR:

Maximum metabolic rate

RMR:

Resting metabolic rate

\(\bar{{X}}\) :

Mean X

\(\hat{{Y}}\) :

Predicted Y value

x 2 :

Corrected sum of squares for X

s Y·X :

Standard error of estimate for Y

\({s}_{\hat{Y}}\) :

Standard error of predicted Y

References

  • Abensperg-Traun MA, Dickman CR, DeBoer ES (1991) Patch use and prey defence in a mammalian myrmecophage the echidna Tachyglossus aculeatus (Monotremata Tachygossidae): a test of foraging efficiency in captive and free-ranging animals. J Zool 225:481–494

    Google Scholar 

  • Anava A, Kam M, Shkolnik A, Degen AA (2001) Heat production and body temperature of Arabian babblers (Turdoides squamiceps): a bird from hot desert habitats. J Arid Environ 48:59–67

    Article  Google Scholar 

  • Anderson MD, Richardson PRK, Woodall PF (1992) Functional analysis of the feeding apparatus and digestive tract anatomy of the aardwolf Proteles cristatus. J Zool 228:423–434

    Article  Google Scholar 

  • Anderson MD, Williams JB, Richardson PRK (1997) Laboratory metabolism and evaporative water loss of the aardwolf, Proteles cristatus. Physiol Zool 70:464–469

    Article  PubMed  CAS  Google Scholar 

  • Archer M (1984) The Australian marsupial radiation. In: Archer M, Clayton G (eds) Vertebrate zoogeography and evolution in Australasia (animals in space and time). Hesperian Press, Carlisle, pp 633–808

    Google Scholar 

  • Archer M, Kirsch JAW (1977) The case for the Thylacomyidae and Myrmecobiidae, Gill, 1972, or why are marsupial families so extended? Proc Linn Soc N S W 102:18–25

    Google Scholar 

  • Aschoff J (1981) Thermal conductance in mammals and birds: its dependence on body size and circadian phase. Comp Biochem Physiol 69A:611–619

    Article  Google Scholar 

  • Aschoff J, Pohl H (1970) Rhythmic variations in energy metabolism. Fed Proc 29:1541–1552

    PubMed  CAS  Google Scholar 

  • Baudinette RV, Churchill SK, Christian KA, Nelson JE, Hudson PJ (2000) Energy, water balance and the roost microenvironment in three Australia cave-dwelling bats (Microchiroptera). J Comp Physiol 170:439–446

    CAS  Google Scholar 

  • Baverstock PR, Krig M, Birrell J (1990) Evolutionary relationships of Australian marsupials as assessed by albumin immunology. Aust J Zool 37:273–288

    Article  Google Scholar 

  • Bininda-Emonds ORP, Gittleman JL, Purvis A (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74:143–175

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorso FJ, McNab BK (2003) Standard energetics of leaf-nosed bats (Hipposieridae): its relationship to intermittent- and protracted-foraging tactics in bats and birds. J Comp Physiol B 173:43–53

    PubMed  CAS  Google Scholar 

  • Bozinovic F, Ruiz G, Rosenmann M (2004) Energetics and torpor of a South American “living fossil”, the microbiotheriid Dromiciops gliroides. J Comp Physiol B 174:293–297

    Article  PubMed  Google Scholar 

  • Bradley SR, Deavers DR (1980) A re-examination of the relationship between thermal conductance and body weight in mammals. Comp Biochem Physiol 65A:465–476

    Article  Google Scholar 

  • Burton CT, Weathers WW (2003) Energetics and thermoregulation of the Gouldian finch (Erythrura gouldiae). Emu 103:1–10

    Article  Google Scholar 

  • Cheverud JM, Dow MM (1985) An autocorrelation analysis of genetic variation due to lineal fission in social groups of Rhesus macaques. Am J Physiol Anthropol 67:113–121

    Article  Google Scholar 

  • Cooper CE, Withers PC (2002) Metabolic physiology of the numbat (Myrmecobius fasciatus). J Comp Physiol B 172:669–675

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE, Withers PC (2003) Field metabolic rate and water turnover of the numbat (Myrmecobius facsiatus). J Comp Physiol B 173:687–693

    Article  PubMed  CAS  Google Scholar 

  • Cortes A, Tirado C, Rosenmann M (2003) Energy metabolism and thermoregulation in Chinchilla revicaudata. J Thermal Biol 28:89–495

    Article  Google Scholar 

  • Crawford EC, Lasiewski RC (1968) Oxygen consumption and respiratory evaporation in the emu and rhea. Condor 70:333–339

    Article  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Garland T, Adolph SC (1994) Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol Zool 67:797–828

    Google Scholar 

  • Garland T, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogentic comparative methods. Am Nat 155:346–364

    Article  Google Scholar 

  • Geiser F, Brigham RM (2000) Torpor, thermal biology and energetics in Australian long-eared bats (Nyctophilus). J Comp Physiol B 170:153–162

    Article  PubMed  CAS  Google Scholar 

  • Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol A 81:741–754

    Article  PubMed  CAS  Google Scholar 

  • Hinds DS, MacMillen RE (1985) Scaling of energy metabolism and evaporative water loss in heteromyid rodents. Physiol Zool 58:282–298

    Google Scholar 

  • Hinds DS, MacMillen RE (1986) Scaling of evaporative water loss in marsupials. Physiol Zool 59:1–9

    Google Scholar 

  • Kalin N, Martin RD, Genoud M (2003) Basal rate of metabolism and temperature eregulation in Goeldi’s monkey (Callimico goeldii). Comp Biochem Physiol A 135:279–290

    Article  CAS  Google Scholar 

  • Kirsch JAW (1968) Prodromus of the comparative serology of Marsupialia. Nature 217:418–420

    Article  PubMed  CAS  Google Scholar 

  • Kirsch JAW, Palma RE (1995) DNA/DNA hybridisation studies of carnivorous marsupials. V. A further estimate of relationships among opossums (Marsupialia: Didelphidae). Mammalia 59:403–425

    Google Scholar 

  • Kirsch JAW, Lapointe FJ, Springer MS (1997) DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust J Zool 45:211–280

    Article  CAS  Google Scholar 

  • Klaassen M, Agrell J, Lindstrom A (2002) Metabolic rate and thermal conductance of lemmings from high-arctic Canada and Siberia. J Comp Physiol B 172:371–378

    Article  PubMed  CAS  Google Scholar 

  • Kleiber M. (1932) Body size and animal metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Lindstrom A, Klaassen M (2003) High basal metabolic rates of shorebirds while in the arctic: a circumpolar view. Condor 105:420–427

    Article  Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2001) The evolution of body armor in mammals: plantigrade constraints of large body size. Evolution 55:1464–1473

    PubMed  CAS  Google Scholar 

  • Lovegrove BG, Smith GA (2003) Is ‘nocturnal hypothermia’ a valid physiological concept in small birds? A study on Bronze Mannikins Spermestes cucullatus. Ibis 145:547–557

    Article  Google Scholar 

  • Mathias ML, Nunes AC, Marques CC, Sousa I, Ramalhinho MG, Aufray JC, Catalan J, Britton-Davidian J (2004) Adaptive energetics in house mice, Mus musculus domesticus, from the island of Porto Santo (Madeira archipelago, North Atlantic). Comp Biochem Physiol A 137:703–709

    Article  CAS  Google Scholar 

  • McKechnie AE, Lovegrove BG (2003) Faculative hypothermic responses in an Afrotripical arid-zone passerine, the red-headed finch (Amadina erythrocephala). J Comp Physiol B 173:339–346

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (1984) Physiological convergence amongst ant-eating and termite-eating mammals. J Zool 203:485–510

    Article  Google Scholar 

  • McNab BK (1988) Complications inherent in scaling basal rate of metabolism in mammals. Quat Rev Biol 63:25–54

    Article  CAS  Google Scholar 

  • McNab BK (2000) The standard energetics of mammalian carnivores: Felidae and Hyaenidae. Can J Zool 78:2227–2239

    Article  Google Scholar 

  • McNab BK, Bonaccorso FJ (2001) The metabolism of New Guinean pteropidid bats. J Comp Physiol B 171:201–214

    Article  PubMed  CAS  Google Scholar 

  • Merola-Zwartjues M, Ligon JD (2000) Ecological energetics of the Puerto Rican tody: heterothermy, torpor and intra-island variation. Ecology 81:990–1003

    Article  Google Scholar 

  • Montgomery DC, Peck EA (1982) Introduction to linear analysis. Wiley, New York

    Google Scholar 

  • Myers RH (1986) Classical and modern regression with applications. Duxbury Press, Boston

    Google Scholar 

  • Nagy KA (1987) Field metabolic rate and food requirement scaling in mammals and birds. Ecol Monogr 57:111–128

    Article  Google Scholar 

  • Nagy KA (1994) Field bioenergetics of mammals: what determines field metabolic rates? Aust J Zool 42:43–53

    Article  Google Scholar 

  • Nagy KA, Girard IA, Brown TK (1999) Energetics of free-ranging mammals, reptiles and birds. Annu Rev Nutr 19:247–277

    Article  PubMed  CAS  Google Scholar 

  • Neter J, Wasserman W, Kutner MH (1990) Applied linear statistical models: regression, analysis of variance, and experimental design. Irwin, Boston

    Google Scholar 

  • Peinke DM, Brown CR (2003) Metabolism and thermoregulation in the springhare (Pedetes capensis). J Comp Physiol B 173:347–353

    Article  PubMed  CAS  Google Scholar 

  • Redford KH, Dorea JG (1984) The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J Zool 203:385–395

    CAS  Google Scholar 

  • Reynolds PS, Lee RM (1996) Phylogenetic analysis of avian energetics: passerines and nonpasserines do not differ. Am Nat 147:735–759

    Article  Google Scholar 

  • Schleucher E (2002) Metabolism, body temperature and thermal conductance of fruit-doves (Aves: Columbidae, Treroninae). Comp Biochem Physiol A 131:417–428

    Article  Google Scholar 

  • Schleucher E, Withers PC (2001) Re-evaluation of the allometry of wet thermal conductance for birds. Comp Biochem Physiol A 129:821–827

    CAS  Google Scholar 

  • Song Z, Wang D (2003) Metabolism and thermoregulate in the striped hamster Cricetulus barabensis. J Thermal Biol 28:509–514

    Article  Google Scholar 

  • Weathers WW, Gerhart KL, Hodum PJ (2000) Thermoregulation in Antarctic fulmarine petrels. J Comp Physiol B 170:561–572

    Article  PubMed  CAS  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass. Proc Natl Acad Sci USA 100:4046–4049

    Article  PubMed  CAS  Google Scholar 

  • Williams JB (1996) A phylogenetic perspective of evaporative water loss in birds. Auk 113:457–472

    Google Scholar 

  • Williams JB (2001) Energy expenditure and water flux of free-living Dune Larks in the Namib: a test of the reallocation hypothesis on a desert bird. Funct Ecol 15:175–185

    Article  Google Scholar 

  • Williams TM, Haun J, Davis RW, Fuiman LA, Kohin S (2001) A killer appetite: metabolic consequences of carnivory in marine mammals. Comp Biochem Physiol A 129:785–796

    Article  CAS  Google Scholar 

  • Williams JB, Munoz-Garcia A, Ostrowski S, Tieleman BI (2004) A phylogenetic analysis of basal metabolism, total evaporative water loss, and life-history among foxes from desert and mesic regions. J Comp Physiol B 174:29–39

    Article  PubMed  CAS  Google Scholar 

  • Withers PC, Thompson GG, Seymour RS (2000) Metabolic physiology of the north-western marsupial mole, Notoryctes caurinus (Marsupialia: Notorycidae). Aust J Zool 48:241–258

    Article  Google Scholar 

  • Withers PC, Cooper CE, Larcombe AN (2006) Environmental correlates of physiological variables in marsupials. Physiol Biochem Zool (in press)

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Cooper.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, C.E., Withers, P.C. Numbats and aardwolves—how low is low? A re-affirmation of the need for statistical rigour in evaluating regression predictions. J Comp Physiol B 176, 623–629 (2006). https://doi.org/10.1007/s00360-006-0085-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0085-8

Keywords

Navigation