Log in

Comparative psychophysics of colour preferences in two species of non-eusocial Australian native halictid bees

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Colour signalling by flowers appears to be the main plant-pollinator communication system observed across many diverse species and locations worldwide. Bees are considered one of the most important insect pollinators; however, native non-eusocial bees are often understudied compared to managed eusocial species, such as honeybees and bumblebees. Here, we tested two species of native Australian non-eusocial halictid bees on their colour preferences for seven different broadband colours with bee-colour-space dominant wavelengths ranging from 385 to 560 nm and a neutral grey control. Lasioglossum (Chilalictus) lanarium demonstrated preferences for a UV-absorbing white (455 nm) and a yellow (560 nm) stimulus. Lasioglossum (Parasphecodes) sp. showed no colour preferences. Subsequent analyses showed that green contrast and spectral purity had a significant positive relationship with the number of visits by L. lanarium to stimuli. Colour preferences were consistent with other bee species and may be phylogenetically conserved and linked to how trichromatic bees processes visual information, although the relative dearth of empirical evidence on different bee species currently makes it difficult to dissect mechanisms. Past studies and our current results suggest that both innate and environmental factors might both be at play in mediating bee colour preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All raw data are available in the supplementary material.

Code availability

Available upon request.

References

  • Backhaus W, Menzel R, Kreißl S (1987) Multidimensional scaling of color similarity in bees. Biol Cybern 56:293–304

    Article  Google Scholar 

  • Barth FG (1985) Insects and flowers. The biology of a partnership. Princeton University Press, Princeton

    Google Scholar 

  • Batley M, Hogendoorn K (2009) Diversity and conservation status of native Australian bees. Apidologie 40:347–354

    Article  Google Scholar 

  • Bell MC, Spooner-Hart RN, Haigh AM (2006) Pollination of greenhouse tomatoes by the Australian bluebanded bee Amegilla (Zonamegilla) holmesi (Hymenoptera: Apidae). J Econ Entomol 99:437–442

    Article  CAS  PubMed  Google Scholar 

  • Biesmeijer JC, Giurfa M, Koedam D, Potts SG, Joel DM, Dafni A (2005) Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers. Naturwissenschaften 92:444–450

    Article  CAS  PubMed  Google Scholar 

  • Bischoff M, Campbell DR, Lord JM, Robertson AW (2013a) The relative importance of solitary bees and syrphid flies as pollinators of two outcrossing plant species in the New Zealand alpine. Austral Ecol 38:169–176

    Article  Google Scholar 

  • Bischoff M, Lord JM, Robertson A, Dyer AG (2013b) Hymenopteran pollinators as agents of selection on flower colour in the New Zealand mountains: salient chromatic signals enhance flower discrimination. N Z J Bot 51:181–193

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  CAS  PubMed  Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543

    Google Scholar 

  • Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators’ colour vision. J Comp Physiol A 171:171–181

    Article  Google Scholar 

  • Chittka L, Wells H (2004) Color vision in bees: mechanisms, ecology and evolution. In: Prete F (ed) Complex worlds from simpler nervous systems. MIT Press, Boston, pp 165–191

    Google Scholar 

  • Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170:545–563

    CAS  PubMed  Google Scholar 

  • Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vis Res 34:1489–1508

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377

    Article  CAS  Google Scholar 

  • Chittka L, Faruq S, Skorupski P, Werner A (2014) Colour constancy in insects. J Comp Physiol A 200:435–448

    Article  Google Scholar 

  • Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London

    Book  Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38:413–478

    Google Scholar 

  • Daumer K (1958) Blumenfarben, wie sie die Bienen sehen. Z Vergl Physiol 41:49–110

    Google Scholar 

  • Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627

    Article  Google Scholar 

  • Dyer AG, Paulk AC, Reser DH (2011) Colour processing in complex environments: insights from the visual system of bees. Proc R Soc B 278:952–959

    Article  PubMed  Google Scholar 

  • Dyer AG, Boyd-Gerny S, McLoughlin S, Rosa MG, Simonov V, Wong BB (2012) Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc R Soc B 279:3606–3615

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyer AG, Boyd-Gerny S, Shrestha M, Lunau K, Garcia JE, Koethe S, Wong BB (2016a) Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm. J Comp Physiol A 202:603–613

    Article  Google Scholar 

  • Dyer AG, Streinzer M, Garcia J (2016b) Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm. J Comp Physiol A 202:629–639

    Article  CAS  Google Scholar 

  • Dyer AG, Boyd-Gerny S, Shrestha M, Garcia JE, van der Kooi CJ, Wong BB (2019) Colour preferences of Tetragonula carbonaria Sm. stingless bees for colour morphs of the Australian native orchid Caladenia carnea. J Comp Physiol A 205:347–361

    Article  Google Scholar 

  • Dyer AG et al (2021) Fragmentary blue: Resolving the rarity paradox in flower colors. Front Plant Sci 11:2212

    Article  Google Scholar 

  • Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool. Jb., Abt. Allg. Zool. Physiol. 35

  • Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91:228–231

    Article  CAS  PubMed  Google Scholar 

  • Giurfa M, Nunez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A 177:247–259

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43

    Article  Google Scholar 

  • Heard T (2016) The Australian native bee book: kee** stingless bee hives for pets, pollination and sugarbag honey. Sugarbag Bees, Australia.

  • Hogendoorn K, Steen Z, Schwarz MP (2000) Native Australian carpenter bees as a potential alternative to introducing bumble bees for tomato pollination in greenhouses. J Apic Res 39:67–74

    Article  Google Scholar 

  • Hogendoorn K, Gross CL, Sedgley M, Keller MA (2006) Increased tomato yield through pollination by native Australian Amegilla chlorocyanea (Hymenoptera: Anthophoridae). J Econ Entomol 99:828–833

    Article  PubMed  Google Scholar 

  • Hogendoorn K, Coventry S, Keller MA (2007) Foraging behaviour of a blue banded bee, Amegilla chlorocyanea in greenhouses: implications for use as tomato pollinators. Apidologie 38:86–92

    Article  Google Scholar 

  • Hogendoorn K, Bartholomaeus F, Keller MA (2010) Chemical and sensory comparison of tomatoes pollinated by bees and by a pollination wand. J Econ Entomol 103:1286–1292

    Article  PubMed  Google Scholar 

  • Houston T (2018) A guide to native bees of Australia. CSIRO Publishing, Australia

    Book  Google Scholar 

  • Howard SR (2021) Wild non-eusocial bees learn a colour discrimination task in response to simulated predation events. Sci Nat 108(4):28

    Article  CAS  Google Scholar 

  • Howard SR, Shrestha M, Schramme J, Garcia JE, Avarguès-Weber A, Greentree AD, Dyer AG (2018) Honeybees prefer novel insect-pollinated flower shapes over bird-pollinated flower shapes. Curr Zool 65:457–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2019a) Numerical cognition in honeybees enables addition and subtraction. Sci Adv 5:easv0961

    Article  Google Scholar 

  • Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2019b) Surpassing the subitizing threshold: appetitive–aversive conditioning improves discrimination of numerosities in honeybees. J Exp Biol 222:jeb205658

    Article  PubMed  Google Scholar 

  • Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2019c) Symbolic representation of numerosity by honeybees (Apis mellifera): Matching characters to small quantities. Proc R Soc B 286:20190238

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard SR, Schramme J, Garcia JE, Ng L, Avarguès-Weber A, Greentree AD, Dyer AG (2020) Spontaneous quantity discrimination of artificial flowers by foraging honeybees. J Exp Biol 223:jeb223610

    Article  PubMed  Google Scholar 

  • Judd DB, MacAdam DL, Wyszecki G, Budde H, Condit H, Henderson S, Simonds J (1964) Spectral distribution of typical daylight as a function of correlated color temperature. Josa 54:1031–1040

    Article  Google Scholar 

  • Kantsa A, Raguso RA, Dyer AG, Sgardelis SP, Olesen JM, Petanidou T (2017) Community-wide integration of floral colour and scent in a Mediterranean scrubland. Nat Ecol Evol 1:1502–1510

    Article  PubMed  Google Scholar 

  • Kemp DJ et al (2015) An integrative framework for the appraisal of coloration in nature. Am Nat 185:705–724

    Article  PubMed  Google Scholar 

  • Kevan P, Giurfa M, Chittka L (1996) Why are there so many and so few white flowers? Trends Plant Sci 1:252

    Article  Google Scholar 

  • Kjøhl M, Nielsen A, Stenseth NC (2011) Potential effects of climate change on crop pollination. Food and Agriculture Organization of the United Nations (FAO).

  • Koethe S, Bossems J, Dyer AG, Lunau K (2016) Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata. J Comp Physiol A 202:615–627

    Article  Google Scholar 

  • Lehrer M, Horridge G, Zhang S, Gadagkar R (1995) Shape vision in bees: innate preference for flower-like patterns. Philos Trans R Soc 347:123–137

    Article  Google Scholar 

  • Leijs R, Dorey J, Hogendoorn K (2018) Twenty six new species of Leioproctus (Colletellus): Australian Neopasiphaeinae, all but one with two submarginal cells (Hymenoptera, Colletidae, Leioproctus). ZooKeys 811:109–168

    Article  Google Scholar 

  • Leonard AS, Masek P (2014) Multisensory integration of colors and scents: insights from bees and flowers. J Comp Physiol A 200:463–474

    Article  CAS  Google Scholar 

  • Lunau K (1991) Innate flower recognition in bumblebees (Bombus terrestris, B. lucorum; Apidae): optical signals from stamens as landing reaction releasers. Ethology 88:203–214

    Article  Google Scholar 

  • Lunau K (1993) Interspecific diversity and uniformity of flower colour patterns as cues for learned discrimination and innate detection of flowers. Experientia 49:1002–1010

    Article  Google Scholar 

  • Mayack C, Naug D (2015) Starving honeybees lose self-control. Biol Lett 11:20140820

    Article  PubMed  PubMed Central  Google Scholar 

  • Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z Vergl Physiol 56:22–62

    Article  Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  • Mitchell RJ, Irwin RE, Flanagan RJ, Karron JD (2009) Ecology and evolution of plant–pollinator interactions. Ann Bot 103:1355–1363

    Article  PubMed  PubMed Central  Google Scholar 

  • Morawetz L, Svoboda A, Spaethe J, Dyer AG (2013) Blue colour preference in honeybees distracts visual attention for learning closed shapes. J Comp Physiol A 199:817–827

    Article  Google Scholar 

  • Ng L, Garcia JE, Dyer AG (2018) Why colour is complex: Evidence that bees perceive neither brightness nor green contrast in colour signal processing. Facets 3:800–817

    Article  Google Scholar 

  • Papiorek S, Rohde K, Lunau K (2013) Bees’ subtle colour preferences: how bees respond to small changes in pigment concentration. Naturwissenschaften 100:633–643

    Article  CAS  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  CAS  PubMed  Google Scholar 

  • Potts SG et al. (2016) Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) on pollinators, pollination and food production.

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

  • Raine NE, Chittka L (2005) Colour preferences in relation to the foraging performance and fitness of the bumblebee Bombus terrestris. Uludag Bee J 5:145–150

    Google Scholar 

  • Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE 2:e556

    Article  PubMed  PubMed Central  Google Scholar 

  • Raine NE, Ings TC, Ramos-Rodriguez O, Chittka L (2006) Intercolony variation in learning performance of a wild British bumblebee population Hymenoptera: apidae: Bombus terrestris audax. Entomol Gen 28:241–256

    Article  Google Scholar 

  • Rodríguez I, Gumbert A, de Ibarra NH, Kunze J, Giurfa M (2004) Symmetry is in the eye of the ‘beeholder’: innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften 91:374–377

    PubMed  Google Scholar 

  • Rohde K, Papiorek S, Lunau K (2013) Bumblebees (Bombus terrestris) and honeybees (Apis mellifera) prefer similar colours of higher spectral purity over trained colours. J Comp Physiol A 199:197–210

    Article  Google Scholar 

  • Sargent RD, Ackerly DD (2008) Plant–pollinator interactions and the assembly of plant communities. Trends Ecol Evol 23:123–130

    Article  PubMed  Google Scholar 

  • Shrestha M, Dyer AG, Boyd-Gerny S, Wong B, Burd M (2013) Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytol 198:301–310

    Article  PubMed  Google Scholar 

  • Shrestha M, Dyer AG, Bhattarai P, Burd M (2014) Flower colour and phylogeny along an altitudinal gradient in the Himalayas of Nepal. J Ecol 102:126–135

    Article  Google Scholar 

  • Shrestha M, Dyer AG, Garcia JE, Burd M (2019) Floral colour structure in two Australian herbaceous communities: it depends on who is looking. Ann Bot 124:221–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha M, Garcia JE, Burd M, Dyer AG (2020) Australian native flower colours: does nectar reward drive bee pollinator flower preferences? PLoS ONE 15:e0226469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98:3898–3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaethe J, Streinzer M, Eckert J, May S, Dyer AG (2014) Behavioural evidence of colour vision in free flying stingless bees. J Comp Physiol A 200:485–496

    Article  CAS  Google Scholar 

  • Stavenga DG, Smits RP, Hoenders BJ (1993) Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis Res 33:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Tai K-C, Shrestha M, Dyer AG, Yang E-C, Wang C-N (2020) Floral colour diversity: how are signals shaped by elevational gradient on the tropical-subtropical mountainous island of Taiwan? Front Plant Sci 11:2037

    Article  Google Scholar 

  • van der Kooi CJ, Dyer AG, Kevan PG, Lunau K (2018) Functional significance of the optical properties of flowers for visual signalling. Ann Bot 123:263–276

    Article  PubMed Central  Google Scholar 

  • Von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der honigbiene. J Comp Physiol 80:439–472

    Article  Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed). Handbook of sensory physiology. Vol. VII/6C comparative physiology and evolution of vision in invertebrates, vol 4. Springer, Berlin, pp 287–616

  • Yang E-C, Lin H-C, Hung Y-S (2004) Patterns of chromatic information processing in the lobula of the honeybee Apis Mellifera L. J Insect Physiol 50:913–925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kit Prendergast for previously identifying the species used in this study. Scarlett R Howard acknowledges the Alfred Deakin Postdoctoral Research Fellowship from Deakin University. Adrian G Dyer was supported by the Australian Research Council Discovery Project 160100161. All animal care was in accordance with institutional guidelines. Formal ethics approval was not required for invertebrate behavioural testing.

Funding

SRH was funded by an Alfred Deakin Postdoctoral Research Fellowship from Deakin University. AGD was supported by the Australian Research Council Discovery Project 160100161.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, data analysis, interpretation of data, and writing of the manuscript. Scarlett R Howard performed the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Scarlett R. Howard.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 65 KB)

Supplementary file2 (CSV 13 KB)

Supplementary file3 (MP4 5269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, S.R., Garcia, J.E. & Dyer, A.G. Comparative psychophysics of colour preferences in two species of non-eusocial Australian native halictid bees. J Comp Physiol A 207, 657–666 (2021). https://doi.org/10.1007/s00359-021-01504-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-021-01504-3

Keywords

Navigation