Log in

Heavy Metal-Induced Phyto-Hormetic Morpho-Physio-Biochemical Adjustments: A Critical Review

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In the past, scientific communities obtained the dose–response only partially right. They correctly described responses at high heavy metal (HM) doses, but ignored and mischaracterized the crucial response at low HM doses. Lower dosages of non-essential heavy metals (HMs) in plants induced plant hormetic responses by triggering innocuous, beneficial, and growth-promoting morpho-physio-biochemical reactions. Instead of creating toxic symptoms in plants, these low amounts of non-essential HM or metalloid dosages improve or boost plants’ metabolism at morphological, physiological, and biochemical levels. This review critically examines distinct non-essential HMs or metalloids-mediated hormetic effects inducing plant morpho-physio-biochemical response characteristics (end points) at specified exposure duration in diverse plant species. Additionally, the review highlights the details of hormesis inside the plant system along with non-essential heavy metal or metalloids-induced morphological, physiological, and biochemical hormetic responses that were clearly risk free, safe, and non-hazardous to plants’ bodies. These responses further ensured the plant’s fitness and long-term survival by strengthening the plant’s immunity against subsequent future interactions with toxicants. The review study also looks over the potential working possible mechanisms behind non-essential HMs or metalloids-induced phyto-hormesis phenomena, such as activation of a variety of plant tolerance mechanisms like phytohormone defence pathways, antioxidant system, stress-related genes, and reactive oxygen species (ROS) homeostasis. All these all mechanisms and their cross talk might contribute to plant growth and developmental processes under modest HMs or metalloids stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Figure. 11
Fig. 12

References

  • Abbas ZK, Mobin M (2016) Comparative growth and physiological responses of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance to salinity and cyclic drought stress. Arch Agron Soil Sci 62(6):745–758

    Article  CAS  Google Scholar 

  • Adamakis IDS, Sperdouli I, Eleftheriou EP, Moustakas M (2020a) Hydrogen peroxide production by the spot-like mode action of bisphenol A. Front Plant Sci 11:1196. https://doi.org/10.3389/FPLS.2020.01196/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  • Adamakis IDS, Sperdouli I, Hanć A, Dobrikova A, Apostolova E, Moustakas M (2020b) Rapid hormetic responses of photosystem II photochemistry of clary sage to cadmium exposure. Int J Mol Sci 22(1):41. https://doi.org/10.3390/IJMS22010041

    Article  PubMed  PubMed Central  Google Scholar 

  • Agathokleous E (2018) Environmental hormesis, a fundamental non-monotonic biological phenomenon with implications in ecotoxicology and environmental safety. Ecotoxicol Environ Saf 148:1042–1053. https://doi.org/10.1016/J.ECOENV.2017.12.003

    Article  CAS  Google Scholar 

  • Agathokleous E (2021) The rise and fall of photosynthesis: hormetic dose response in plants. J for Res 32(2):889–898

    Article  CAS  Google Scholar 

  • Agathokleous E, Calabrese EJ (2020) A global environmental health perspective and optimisation of stress. Sci Total Environ 704:135263

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Feng Z, Iavicoli I, Calabrese EJ (2019a) The two faces of nanomaterials: a quantification of hormesis in algae and plants. Environ Int 131:105044

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Kitao M, Calabrese EJ (2019b) Hormesis: a compelling platform for sophisticated plant science. Trends Plant Sci 24(4):318–327

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Kitao M, Harayama H (2019c) On the nonmonotonic, hormetic photoprotective response of plants to stress. Dose-Response 17(2):1559325819838420

    Article  PubMed  PubMed Central  Google Scholar 

  • Agathokleous E, Feng ZZ, Peñuelas J (2020a) Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants? Sci Total Environ 726:138637. https://doi.org/10.1016/J.SCITOTENV.2020.138637

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Kitao M, Calabrese EJ (2020b) Hormesis: highly generalizable and beyond laboratory. Trends Plant Sci 25(11):1076–1086. https://doi.org/10.1016/J.TPLANTS.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Wang Q, Iavicoli I, Calabrese EJ (2022) The relevance of hormesis at higher levels of biological organization: hormesis in microorganisms. Curr Opin Toxicol 29:1–9

    Article  CAS  Google Scholar 

  • Aguirre-Becerra H, Vazquez-Hernandez MC, Saenz de la OD, Alvarado-Mariana A, Guevara-Gonzalez RG, Garcia-Trejo JF, Feregrino-Perez AA (2021) Role of stress and defense in plant secondary metabolites production. Bioactive Nat Prod Pharm Appl 151–195

  • Aibibu N, Liu Y, Zeng G, Wang X, Chen B, Song H, Xu L (2010) Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol 101(16):6297–6303

    Article  CAS  PubMed  Google Scholar 

  • Anani OA, Abel I, Olomukoro JO, Onyeachu IB (2022) Insights to proteomics and metabolomics metal chelation in food crops. J Proteins Proteomics 13(3):159–173

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 4:69

    Article  Google Scholar 

  • Belz RG, Duke SO (2017) Herbicide-mediated hormesis. In: Pesticide dose: effects on the environment and target and non-target organisms. American Chemical Society. ACS Publication, pp 135–148

  • Belz RG, Sinkkonen A (2021) Low glyphosate doses change reproduction and produce tolerant offspring in dense populations of Hordeum vulgare. Pest Manag Sci 77(10):4770–4784

    Article  CAS  PubMed  Google Scholar 

  • Bernabé-Antonio A, Álvarez L, Buendía-González L, Maldonado-Magaña A, Cruz-Sosa F (2015) Accumulation and tolerance of Cr and Pb using a cell suspension culture system of Jatropha curcas. Plant Cell Tissue Organ Cult 120:221–228

    Article  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87(1):10–20

    Article  CAS  Google Scholar 

  • Calabrese EJ (2003) The maturing of hormesis as a credible dose–response model. Nonlinearity Biol Toxicol Med 1(3):15401420390249908

    Article  Google Scholar 

  • Calabrese EJ (2004) Hormesis: a revolution in toxicology, risk assessment, and medicine: re-framing the dose–response relationship. EMBO Rep 5(S1):S37–S40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese EJ (2005a) Historical blunders: how toxicology got the dose–response relationship half right. Cell Mol Biol 51(7):643–654

    CAS  PubMed  Google Scholar 

  • Calabrese EJ (2005b) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138(3):378–411

    Article  CAS  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27(7):1451–1474

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2009) Getting the dose–response wrong: why hormesis became marginalized and the threshold model accepted. Arch Toxicol 83:227–247

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2015) Hormesis: principles and applications. Homeopathy 104(02):69–82

    Article  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21(2):91–97. https://doi.org/10.1191/0960327102ht217oa

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Agathokleous E (2021) Accumulator plants and hormesis. Environ Pollut 274:116526

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (1999) The marginalization of hormesis. Toxicol Pathol 27(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000) Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol 19(1):2–31

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2001) The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci 62(2):330–338

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157(1):42–48

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Mattson MP (2011) Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal 5:25–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Camilo dos Santos JC, Ribeiro Silva DM, Jardim Amorim D, do Rosário Rosa V, dos Santos Farias AL, Domingues Velini E, Carbonari CA, de Almeida Silva M (2022) Glyphosate hormesis attenuates water deficit stress in safflower (Carthamus tinctorius L.) by modulating physiological and biochemical mediators. Sci Total Environ 810:152204. https://doi.org/10.1016/J.SCITOTENV.2021.152204

    Article  CAS  PubMed  Google Scholar 

  • Cândido GS, Martins GC, Vasques IC, Lima FR, Pereira P, Engelhardt MM, José Marques J (2020) Toxic effects of lead in plants grown in Brazilian soils. Ecotoxicology 29:305–313

    Article  PubMed  Google Scholar 

  • Carneiro JM, Chacón-Madrid K, Galazzi RM, Campos BK, Arruda SC, Azevedo RA, Arruda MA (2017) Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches. J Trace Elem Med Biol 44:50–58

    Article  CAS  PubMed  Google Scholar 

  • Carvalho ME, Castro PR, Azevedo RA (2020) Hormesis in plants under Cd exposure: from toxic to beneficial element ? J Hazard Mater 384:121434

    Article  CAS  PubMed  Google Scholar 

  • Castro RO, Trujillo MM, Bucio JL, Cervantes C, Dubrovsky J (2007) Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Sci 172(4):684–691

    Article  CAS  Google Scholar 

  • Chen BC, Lai HY, Juang KW (2012) Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol Environ Saf 80:393–400

    Article  CAS  PubMed  Google Scholar 

  • Christou A, Georgiadou EC, Zissimos AM, Christoforou IC, Christofi C, Neocleous D, Fotopoulos V (2020) Hexavalent chromium leads to differential hormetic or damaging effects in alfalfa (Medicago sativa L.) plants in a concentration-dependent manner by regulating nitro-oxidative and proline metabolism. Environ Pollut 267:115379

    Article  CAS  PubMed  Google Scholar 

  • Cunha Neto ARD, Ambrósio ADS, Wolowski M, Westin TB, Govêa KP, Carvalho M, Barbosa S (2020) Negative effects on photosynthesis and chloroplast pigments exposed to lead and aluminum: a meta-analysis. Cerne 26:232–237

    Article  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122:4–20. https://doi.org/10.1016/J.FREERADBIOMED.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  • d’Aquino L, De Pinto MC, Nardi L, Morgana M, Tommasi F (2009) Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 75(7):900–905

    Article  PubMed  Google Scholar 

  • Dawood MF, Azooz MM (2019) Concentration-dependent effects of tungstate on germination, growth, lignification-related enzymes, antioxidants, and reactive oxygen species in broccoli (Brassica oleracea var. italica L.). Environ Sci Pollut Res 26(36):36441–36457

    Article  CAS  Google Scholar 

  • de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55(9):1159–1168

    Article  PubMed  Google Scholar 

  • de Oliveira C, Ramos SJ, Siqueira JO, Faquin V, de Castro EM, Amaral DC, Guilherme LR (2015) Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants. Ecotoxicol Environ Saf 122:136–144

    Article  PubMed  Google Scholar 

  • Demple B (1991) Regulation of bacterial oxidative stress genes. Annu Rev Genet 25(1):315–337

    Article  CAS  PubMed  Google Scholar 

  • Dhiman S, Khanna K, Kumar P, Bhardwaj T, Devi K, Sharma N, Bhardwaj R (2023) Divulging molecular perspectives of plant defense machinery under heavy metal toxicity. J Plant Growth Regul 1–37

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    Article  Google Scholar 

  • do Nascimento JL, de Almeida AAF, Barroso JP, Mangabeira PA, Ahnert D, Sousa AG, Baligar VC (2018) Physiological, ultrastructural, biochemical and molecular responses of young cocoa plants to the toxicity of Cr (III) in soil. Ecotoxicol Environ Saf 159:272–283

    Article  PubMed  Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148(2–3):99–104

    Article  CAS  PubMed  Google Scholar 

  • Durenne B, Druart P, Blondel A, Fauconnier ML (2018) How cadmium affects the fitness and the glucosinolate content of oilseed rape plantlets. Environ Exp Bot 155:185–194

    Article  CAS  Google Scholar 

  • Erofeeva EA (2014) Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses. Dose-Response 12(1)

  • Erofeeva EA (2021) Plant hormesis and Shelford’s tolerance law curve. J for Res 32(5):1789–1802

    Article  CAS  Google Scholar 

  • Erofeeva EA (2022a) Environmental hormesis of non-specific and specific adaptive mechanism in plants. Sci Total Environ 804:150059. https://doi.org/10.1016/J.SCITOTENV.2021.150059

    Article  CAS  PubMed  Google Scholar 

  • Erofeeva EA (2022b) Hormesis in plants: its common occurrence across stresses. Curr Opin Toxicol 30:100333

    Article  CAS  Google Scholar 

  • Erofeeva EA (2022c) Environmental hormesis: from cell to ecosystem. Curr Opin Environ Sci Health 100378

  • Fang LC, Liu YQ, Tian HX, Chen HS, Wang YQ, Huang M (2017) Proper land use for heavy metal–polluted soil based on enzyme activity analysis around a Pb–Zn mine in Feng County, China. Environ Sci Pollut Res 24:1–13

    Article  Google Scholar 

  • Francischini GS, Sala HR, Braga-Reis I, Lima-Moro A, Bertoli SC (2020) Commercial growth regulator has adverse effect over soybean seedlings under different cadmium levels. Span J Agric Res 18(1):e0301–e0301

    Article  Google Scholar 

  • Furrer R, Hawley JA, Handschin C (2023) The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev

  • Garcia-Jimenez A, Gomez-Merino FC, Tejeda-Sartorius O, Trejo-Tellez LI (2017) Lanthanum affects bell pepper seedling quality depending on the genotype and time of exposure by differentially modifying plant height, stem diameter and concentrations of chlorophylls, sugars, amino acids, and proteins. Front Plant Sci 8:308

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Jiménez A, Trejo-Téllez LI, Guillén-Sánchez D, Gómez-Merino FC (2018) Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS ONE 13(8):e0201908

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawrońska H, Przybysz A, Szalacha E, Pawlak K, Brama K, Miszczak A, Gawroński SW (2018) Platinum uptake, distribution and toxicity in Arabidopsis thaliana L. plants. Ecotoxicol Environ Saf 147:982–989

    Article  PubMed  Google Scholar 

  • Godínez-Mendoza PL, Rico-Chávez AK, Ferrusquía-Jimenez NI, Carbajal-Valenzuela IA, Villagómez-Aranda AL, Torres-Pacheco I, Guevara-González RG (2023) Plant hormesis: revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. Sci Total Environ 894:164883

    Article  PubMed  Google Scholar 

  • Gonçalves JF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R, Nicoloso FT (2009) Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem 47(9):814–821

    Article  PubMed  Google Scholar 

  • Gressel J, Dodds J (2013) Commentary: hormesis can be used in enhancing plant productivity and health; but not as previously envisaged. Plant Sci 213:123–127

    Article  CAS  PubMed  Google Scholar 

  • Guo SF, Yu SF, Huang XH (2014) Effect of La (III) on some physiological index and ultrastructure of honeysuckle (Lonicera japonica Thunb.). In: Advanced materials research. Trans Tech Publications Ltd., vol 864, pp 295–298

  • Haghighi AK, Rezayian M, Niknam V, Ganjali MR, Mirmasoumi M (2023) Cerium and samarium blocked antioxidant enzymes in wheat plants

  • Hajiboland R, Bahrami Rad S, Barceló J, Poschenrieder C (2013) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J Plant Nutr Soil Sci 176(4):616–625

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807(8):977–988

    Article  PubMed  Google Scholar 

  • Hu X, Makita S, Schelbert S, Sano S, Ochiai M, Tsuchiya T, Tanaka R (2015) Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiol 167(3):660–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, He X, Chen W, Liu Z, Huang Y, Yu S (2013) Hormesis phenomena under Cd stress in a hyperaccumulator—Lonicera japonica Thunb. Ecotoxicology 22:476–485

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Liu Z, Chen W, Ye Y, Yu S, He X (2015) Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. J Plant Growth Regul 34(1):13–21

    Article  CAS  Google Scholar 

  • Jiang H, Zhao X, Fang J, **ao Y (2018) Physiological responses and metal uptake of Miscanthus under cadmium/arsenic stress. Environ Sci Pollut Res 25(28):28275–28284

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthik V, Karuna B, Kumar PS, Saravanan A, Hemavathy RV (2022) Development of lab-on-chip biosensor for the detection of toxic heavy metals: a review. Chemosphere 299:134427

    Article  CAS  PubMed  Google Scholar 

  • Kendig EL, Le HH, Belcher SM (2010) Defining hormesis: evaluation of a complex concentration response phenomenon. Int J Toxicol 29(3):235–246

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Lee YM, Choi JY, Jacobs DR Jr, Lee DH (2018) Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environ Pollut 233:725–734

    Article  CAS  PubMed  Google Scholar 

  • Kitchin KT (2002) Defining, explaining and understanding hormesis. Hum Exp Toxicol 21(2):105–106

    Article  CAS  PubMed  Google Scholar 

  • Koffler BE, Bloem E, Zellnig G, Zechmann B (2013) High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis. Micron 45:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XP, Müller-Moulé P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99(23):15222–15227. https://doi.org/10.1073/PNAS.232447699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Stojanovski S, Maechler P (2012) Mitochondrial hormesis in pancreatic β cells: does uncoupling protein 2 play a role ?. Oxid Med Cell Longev

  • Li X, Wang L, Wang S, Yang Q, Zhou Q, Huang X (2017) A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones. Ecotoxicol Environ Saf 150:152–158

    Article  PubMed  Google Scholar 

  • Li X, Zhang X, Wang X, Yang X, Cui Z (2019) Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum. Chemosphere 224:716–725

    Article  CAS  PubMed  Google Scholar 

  • Li P, Zhang J, Sun X, Agathokleous E, Zheng G (2022) Atmospheric Pb induced hormesis in the accumulator plant Tillandsia usneoides. Sci Total Environ 811:152384

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Zhouli L, Wei C, **ngyuan H (2012) Stimulative effect induced by low-concentration Cadmium in Lonicera japonica Thunb. Afr J Microbiol Res 6(4):826–833

    Google Scholar 

  • Liu Z, He X, Chen W, Yuan F, Yan K, Tao D (2009) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. J Hazard Mater 169(1–3):170–175

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Wang X, Zhang X, Gao Z (2013a) Effects of lanthanum on growth and accumulation in roots of rice seedlings. Plant Soil Environ 59(5):196–200

    Article  CAS  Google Scholar 

  • Liu Z, Chen W, He X, Jia L, Huang Y, Zhang Y, Yu S (2013b) Cadmium-induced physiological response in Lonicera japonica Thunb. Clean 41(5):478–484

    CAS  Google Scholar 

  • Liu Z, Chen W, He X, Jia L, Yu S, Zhao M (2015) Hormetic responses of Lonicera japonica Thunb. to cadmium stress. Dose-Response 13(1)

  • Liu D, Zheng S, Wang X (2016) Lanthanum regulates the reactive oxygen species in the roots of rice seedlings. Sci Rep 6(1):31860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Lan MM, He EK, Yao AJ, Wang GB, Tang YT, Qiu RL (2021) Phenomic and metabolomic responses of roots to cadmium reveal contrasting resistance strategies in two rice cultivars (Oryza sativa L.). Soil Ecol Lett 3(3):220–229

    Article  CAS  Google Scholar 

  • Liu Z, Tian L, Chen M, Zhang L, Lu Q, Wei J, Duan X (2023) Hormesis responses of growth and photosynthetic characteristics in Lonicera japonica Thunb. to cadmium stress: whether electric field can improve or not? Plants 12(4):933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio JS, Ravelo-Ortega G, López-Bucio J (2022) Chromium in plant growth and development: toxicity, tolerance and hormesis. Environ Pollut 312:120084

    Article  PubMed  Google Scholar 

  • López-Luna J, Cruz-Fernández S, Mills DS, Martínez-Enríquez AI, Solís-Domínguez FA, del Carmen Ángeles González-Chávez M, Carrillo-González R, Martinez-Vargas S, Mijangos-Ricardez OF, del Carmen Cuevas-Díaz M (2020) Phytotoxicity and upper localization of Ag@CoFe2O4 nanoparticles in wheat plants. Environ Sci Pollut Res 27(2):1923–1940

    Article  Google Scholar 

  • Ma X, Zhao X, Zhang Q, Zhou Z, Dou Y, Ji W, Li J (2022) Comparative transcriptome analysis of broccoli seedlings under different Cd exposure levels revealed possible pathways involved in hormesis. Sci Hortic 304:111330

    Article  CAS  Google Scholar 

  • Małkowski E, Sitko K, Szopiński M, Gieroń Ż, Pogrzeba M, Kalaji HM, Zieleźnik-Rusinowska P (2020) Hormesis in plants: the role of oxidative stress, auxins and photosynthesis in corn treated with Cd or Pb. Int J Mol Sci 21(6)

  • Marques RF, Araújo PS, Pinheiro GHR, Souza RM, Martins D, Marchi SR (2021) Hormesis of 2, 4-D choline salt in productive aspects of cotton. J Environ Sci Health 56(11):977–985

    Article  CAS  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • McAusland L, Atkinson JA, Lawson T, Murchie EH (2019) High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions. Plant Methods 15(1):1–15

    Article  CAS  Google Scholar 

  • McGinnis M, Sun C, Dudley S, Gan J (2019) Effect of low-dose, repeated exposure of contaminants of emerging concern on plant development and hormone homeostasis. Environ Pollut 252:706–714

    Article  CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Springer, New York

    Book  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4)

  • Miranda Pazcel EM, Wannaz ED, Pignata ML, Salazar MJ (2018a) Tagetes minuta L. variability in terms of lead phytoextraction from polluted soils: is historical exposure a determining factor? Environ Process 5(2):243–259

    Article  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19. https://doi.org/10.1016/J.TPLANTS.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Moustakas M, Moustaka J, Sperdouli I (2022) Hormesis in photosystem II: a mechanistic understanding. Curr Opin Toxicol 29:57–64. https://doi.org/10.1016/J.COTOX.2022.02.003

    Article  CAS  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64(13):3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Muszyńska E, Labudda M (2019) Dual role of metallic trace elements in stress biology—from negative to beneficial impact on plants. Int J Mol Sci 20(13):3117

    Article  PubMed  PubMed Central  Google Scholar 

  • Muszyńska E, Hanus-Fajerska E, Ciarkowska K (2018) Studies on lead and cadmium toxicity in Dianthus carthusianorum calamine ecotype cultivated in vitro. Plant Biol 20(3):474–482

    Article  PubMed  Google Scholar 

  • Naaz G, Chauhan KL (2019) Lead tolerance and accumulation potential of Brassica juncea L. varieties in imitatively contaminated soil. Res J Life Sci Bionform Pharm Chem Sci 5(2):436–447

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nie J, Pan Y, Shi J, Guo Y, Yan Z, Duan X, Xu M (2015) A comparative study on the uptake and toxicity of nickel added in the form of different salts to maize seedlings. Int J Environ Res Public Health 12(12):15075–15087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oláh V, Hepp A, Irfan M, Mészáros I (2021) Chlorophyll fluorescence imaging-based duckweed phenoty** to assess acute phytotoxic effects. Plants 10(12):2763

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira DG, Carvalho MEA, Silva HF, Brignoni AS, Lima LR, Camargos LS, Souza LA (2021) Lonchocarpuscultratus, a Brazilian savanna tree, endures high soil Pb levels. Environ Sci Pollut Res 28(36):50931–50940

    Article  CAS  Google Scholar 

  • Ouyang J, Wang X, Zhao B, Yuan X, Wang Y (2003) Effects of rare earth elements on the growth of Cistanchedeserticola cells and the production of phenylethanoid glycosides. J Biotechnol 102(2):129–134

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, Luis A (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40(6–8):521–530

    Article  CAS  Google Scholar 

  • Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54(1):1–6

    Article  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129(2):460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patnaik AR, Achary VMM, Panda BB (2013) Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. Plant Growth Regul 71(2):157–170

    Article  CAS  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274

    Article  CAS  PubMed  Google Scholar 

  • Piwowarczyk B, Tokarz K, Muszyńska E, Makowski W, Jędrzejczyk R, Gajewski Z, Hanus-Fajerska E (2018) The acclimatization strategies of kidney vetch (Anthyllis vulneraria L.) to Pb toxicity. Environ Sci Pollut Res 25:19739–19752

    Article  CAS  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Flores FJ, Melouk H, Walker NR, Molineros JE, Garzon CD (2017) Chemical hormesis on plant pathogenic fungi and oomycetes. In: Pesticide dose: effects on the environment and target and non-target organisms. American Chemical Society, pp. 121–133

  • Prado C, Rodríguez-Montelongo L, González JA, Pagano EA, Hilal M, Prado FE (2010) Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. J Hazard Mater 177(1–3):546–553

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Singh AK, Chand S, Chanotiya CS, Patra DD (2010) Effect of chromium and lead on yield, chemical composition of essential oil, and accumulation of heavy metals of mint species. Commun Soil Sci Plant Anal 41(18):2170–2186

    Article  CAS  Google Scholar 

  • Qiu Z, Wang L, Zhou Q (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90(3):1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Randić M, Estrada E (2005) Order from chaos: observing hormesis at the proteome level. J Proteome Res 4(6):2133–2136

    Article  PubMed  Google Scholar 

  • Raza A, Bashir S, Salehi H, Jamla M, Charagh S, Rad AC, Hossain MA (2023) Advanced techniques in omics research in relation to heavy metal/metalloid toxicity and tolerance in plants. Heavy Met Toxicity Tolerance Plants 35–57

  • Reinheckel T, Noack H, Lorenz S, Wiswedel I, Augustin W (1998) Comparison of protein oxidation and aldehyde formation during oxidative stress in isolated mitochondria. Free Radic Res 29(4):297–305

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Chang H, Li L, Teng Y (2020) Effect of graphene oxide on growth of wheat seedlings: insights from oxidative stress and physiological flux. Bull Environ Contam Toxicol 105(1):139–145

    Article  CAS  PubMed  Google Scholar 

  • Rico-Chávez AK, Franco JA, Fernandez-Jaramillo AA, Contreras-Medina LM, Guevara-González RG, Hernandez-Escobedo Q (2022) Machine learning for plant stress modeling: a perspective towards hormesis management. Plants 11(7):970

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez E, Santos C, Azevedo R, Moutinho-Pereira J, Correia C, Dias MC (2012) Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Biochem 53:94–100

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150(1):229–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, **menez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspicaerulescens from western Europe. Plant Cell Environ 26(10):1657–1672

    Article  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars: metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4(5):388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruban AV, Wilson S (2021) The mechanism of non-photochemical quenching in plants: localization and driving forces. Plant Cell Physiol 62(7):1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Saksena HB, Sharma M, Singh D, Laxmi A (2020) The versatile role of glucose signalling in regulating growth, development and stress responses in plants. J Plant Biochem Biotechnol 29(4):687–699

    Article  CAS  Google Scholar 

  • Sardar K, Qing C, Hesham AEL, Yue X, He JZ (2007) Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J Environ Sci 19:834–840

    Article  Google Scholar 

  • Scebba F, Arduini I, Ercoli L, Sebastiani L (2006) Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plant 50:688–692

    Article  CAS  Google Scholar 

  • Schalie W, Gentile J (2000) Ecological risk assessment: implications of hormesis. J Appl Toxicol 20

  • Schmitt M, Watanabe T, Jansen S (2016) The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species. AoB Plants 8

  • Seth CS, Chaturvedi PK, Misra V (2007) Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodelapolyrrhiza L.) in response to its accumulation. Environ Toxicol 22(6):539–549

    Article  CAS  PubMed  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Niazi NK, Rinklebe J, Bundschuh J, Dumat C, Pinelli E (2020) Trace elements-induced phytohormesis: a critical review and mechanistic interpretation. Crit Rev Environ Sci Technol 50(19):1984–2015

    Article  CAS  Google Scholar 

  • Shi J, Huber M, Wang T, Dali W, Lin Z, Chun-Sheng Y (2016) Progress in the studies on hormesis of low-dose pollutants. Environ Dis 1(2):58

    Article  Google Scholar 

  • Shi Y, Liu Y, Li H, Pei H, Xu Y, Ju X (2021) Phytochelatins formation kinetics and Cd-induced growth inhibition in Lolium perenne L. at elevated CO2 level under Cd stress. Environ Sci Pollut Res 28:35751–35763

    Article  CAS  Google Scholar 

  • Shuja N (2016) Heavy metal toxicity. Cell 333:4205687

    Google Scholar 

  • Singhal RK, Fahad S, Kumar P, Choyal P, Javed T, **ger D, Nawaz T (2023) Beneficial elements: new players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regul 100(2):237–265

    Article  CAS  Google Scholar 

  • Smirnov OE, Karpets LA, Zinchenko AV, Kovalenko MS, Konotop YO, Schwartau VV, Taran NY (2019) Aluminum nanoscales as hormetic response effectors in Fagopyrum esculentum seedlings. Дoпoвiдi HAH Укpaїни

  • Souri Z, Cardoso AA, da‐Silva CJ, de Oliveira LM, Dari B, Sihi D, Karimi N (2019) Heavy metals and photosynthesis: recent developments. Photosynth Prod Environ Stress 107–134

  • Stamelou M-L, Sperdouli I, Pyrri I, Adamakis I-DS, Moustakas M (2021) Hormetic responses of photosystem II in Tomato to Botrytis cinerea. Plants 10(3):521. https://doi.org/10.3390/PLANTS10030521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Calabrese EJ, Lin Z, Lian B, Zhang X (2020) Similarities between the Yin/Yang doctrine and hormesis in toxicology and pharmacology. Trends Pharmacol Sci 41(8):544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Li P, Zheng G (2021) Biomarker responses of Spanish Moss Tillandsia usneoides to atmospheric Hg and hormesis in this species. Front Plant Sci 12:50

    Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14(6):691–699

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Tang YT, Qiu RL, Zeng XW, Ying RR, Yu FM, Zhou XY (2009) Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot 66(1):126–134

    Article  CAS  Google Scholar 

  • Tasho RP, Shin WT, Cho JY (2018) Acclimatization of Pisum sativum L., grown in soil contaminated with veterinary antibiotics, an attribute of dose hormetic response of root metabolites. Sci Total Environ 635:364–374

    Article  CAS  PubMed  Google Scholar 

  • Trejo-Téllez LI, García-Jiménez A, Escobar-Sepúlveda HF, Ramírez-Olvera SM, Bello-Bello JJ, Gómez-Merino FC (2020) Silicon induces hormetic dose–response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. PeerJ 8:e9224

    Article  PubMed  PubMed Central  Google Scholar 

  • UdDin I, Bano A, Masood S (2015) Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotoxicol Environ Saf 113:271–278

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Romero-Gomez SDJ, Rico-Garcia E, Ocampo-Velazquez RV, Torres-Pacheco I (2017) Plant hormesis management with biostimulants of biotic origin in agriculture. Front Plant Sci 8:1762

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez-Hernández MC, Parola-Contreras I, Montoya-Gómez LM, Torres-Pacheco I, Schwarz D, Guevara-González RG (2019) Eustressors: chemical and physical stress factors used to enhance vegetables production. Sci Hortic 250:223–229

    Article  Google Scholar 

  • Velini ED, Alves E, Godoy MC, Meschede DK, Souza RT, Duke SO (2008) Glyphosate applied at low doses can stimulate plant growth. Pest Manag Sci 64(4):489–496

    Article  CAS  PubMed  Google Scholar 

  • Vercesi AE, Borecký J, Maia IDG, Arruda P, Cuccovia IM, Chaimovich H (2006) Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol 57:383–404

    Article  CAS  PubMed  Google Scholar 

  • Wang CR, Tian Y, Wang XR, Yu HX, Lu XW, Wang C, Wang H (2010) Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings. Chemosphere 80(9):965–971

    Article  CAS  PubMed  Google Scholar 

  • Wang C, He M, Shi W, Wong J, Cheng T, Wang X, Chen F (2011) Toxicological effects involved in risk assessment of rare earth lanthanum on roots of Vicia faba L. seedlings. J Environ Sci 23(10):1721–1728

    Article  CAS  Google Scholar 

  • Wang CR, **ao JJ, Tian Y, Bao X, Liu L, Yu Y, Wang XR, Chen TY (2012a) Antioxidant and prooxidant effects of lanthanum ions on Vicia faba L. seedlings under cadmium stress, suggesting ecological risk. Environ Toxicol Chem 31(6):1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Luo X, Tian Y, **e Y, Wang S, Li Y, Wang X (2012b) Biphasic effects of lanthanum on Vicia faba L. seedlings under cadmium stress, implicating finite antioxidation and potential ecological risk. Chemosphere 86(5):530–537

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yuan X, Zhu Y, Wang Y, Li D, He J, **ao Y (2023) Low-level cadmium exposure induced hormesis in peppermint young plant by constantly activating antioxidant activity based on physiological and transcriptomic analyses. Front Plant Sci 14:1088285

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei C, Jiao Q, Agathokleous E, Liu H, Li G, Zhang J, Jiang Y (2022) Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Sci Total Environ 807:150992

    Article  CAS  PubMed  Google Scholar 

  • Welc R, Luchowski R, Kluczyk D, Zubik-Duda M, Grudzinski W, Maksim M, Reszczynska E, Sowinski K, Mazur R, Nosalewicz A, Gruszecki WI (2021) Mechanisms sha** the synergism of zeaxanthin and PsbS in photoprotective energy dissipation in the photosynthetic apparatus of plants. Plant J 107(2):418–433

    Article  CAS  PubMed  Google Scholar 

  • Wiszniewska A (2021) Priming strategies for benefiting plant performance under toxic trace metal exposure. Plants 10(4):623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang C, Mei X (2001) Stimulation of taxol production and excretion in Taxus spp. cell cultures by rare earth chemical lanthanum. J Biotechnol 85(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174(1–3):1–8

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Luo Q, Liu S, Zhao Y, Long Y, Pan Y (2018) Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol Environ Saf 162:35–41

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Sun Y, Wang Y, Cui Y, Jiang Y, Zhang C (2023) Hormesis effects in tomato plant growth and photosynthesis due to acephate exposure based on physiology and transcriptomic analysis. Pest Manag Sci 79(6):2029–2039

    Article  CAS  PubMed  Google Scholar 

  • Ye B, Gressel J (2000) Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta 211:50–61

    Article  CAS  PubMed  Google Scholar 

  • Yuebing S, Shunan Z, Lin W, Xuefeng L, Yingming X (2020) Changes of enzymatic activities, substrate utilization pattern, and microbial community diversity in heavy metal-contaminated soils. Water Air Soil Pollut 231(8):1–16. https://doi.org/10.1007/S11270-020-04798-2/TABLES/3

    Article  Google Scholar 

  • Zeng Q, Zhu JG, Cheng HL, **e ZB, Chu HY (2006) Phytotoxicity of lanthanum in rice in haplic acrisols and cambisols. Ecotoxicol Environ Saf 64(2):226–233

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cheng M, Sun Z, Wang L, Zhou Q, Huang X (2017) Combined acid rain and lanthanum pollution and its potential ecological risk for nitrogen assimilation in soybean seedling roots. Environ Pollut 231:524–532

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li X, Yang H, Cui Z (2018) Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum. Ecotoxicol Environ Saf 157:21–28

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sun D, Gao W, Zhang X, Ye W, Zhang Z (2024) The metabolic mechanisms of Cd-induced hormesis in photosynthetic microalgae, Chromochloris zofingiensis. Sci Total Environ 912:168966

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Gao L, Chen B, Feng L (2019) Phytoremediation potential of Miscanthus sinensis for mercury-polluted sites and its impacts on soil microbial community. Environ Sci Pollut Res 26:34818–34829

    Article  CAS  Google Scholar 

  • Zhouli L, Wei C, **ngyuan H (2011) Cadmium-induced changes in growth and antioxidative mechanisms of a medicine plant (Lonicera japonica Thunb.). J Med Plants Res 5(8):1411–1417

    Google Scholar 

  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ (2019) Lead toxicity in plants: impacts and remediation. J Environ Manag 250:109557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author duly acknowledge the University Grant Commission, Government of India, for its financial support.

Author information

Authors and Affiliations

Authors

Contributions

S. Dhiman: investigation; conceptualization; data curation; formal analysis; methodology; roles/writing—original draft; A.D. Singh and J. Kour: conceptualization; data curation; formal analysis; V. Kumar and R. Bhardwaj: project administration; resources; software; supervision; validation; visualization; and writing—review and editing. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Vinod Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Vijay Pratap Singh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, S., Singh, A.D., Kour, J. et al. Heavy Metal-Induced Phyto-Hormetic Morpho-Physio-Biochemical Adjustments: A Critical Review. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11408-6

Keywords

Navigation