Log in

Jasmonic Acid: A Versatile Phytohormone Regulating Growth, Physiology, and Biochemical Responses

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Phytohormones are the key regulators of plant growth, development, and responses to environmental stressors. Among these, jasmonates (JAs) are particularly crucial, derived mainly from α-linolenic acid (α-LA). JAs govern various physiological processes like seed germination, root elongation, and apical hook formation, while also influencing secondary metabolite production and defense mechanisms. Interacting with enzymes, genes, and other growth regulators, JAs modulate intricate signaling pathways, activating metabolic responses in both normal and stressed conditions. Transcription factors such as MYB, WRKY, basic Helix-Loop-Helix (bHLH), and APETALA2/JA-responsive ethylene response factor (AP2/ERF) are central components to JA signaling pathways, impacting the synthesis of bioactive compounds of therapeutic potential. Additionally, JAs act as chemical elicitors, promoting secondary metabolite production in vitro, leveraging advancements in plant cell and tissue culture techniques. In this regard, the present review offers a comprehensive discussion on diverse roles of JAs in plant physiology and biochemistry, including its biosynthesis, and suggests strategies for large-scale bioactive compound production via plant cell and tissue culture methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelazeez WMA, Anatolievna KY, Zavdetovna KL, Damirovna AG, Abou El-Dis GR, Arnoldovna TO (2022) Enhanced productivity of atropine in cell suspension culture of Hyoscyamus muticus L. In Vitro Cell Dev Biol Plant 58(4):593–605

    CAS  Google Scholar 

  • Abed AS, Ismail EN, Majeed DM, Al-Jibouri AMJ (2023) Increasing amounts of secondary metabolites and medicinal compounds in callus culture of Moringa Oleifera (Lam.) using abiotic elicitors. Iraqi J Sci. https://doi.org/10.24996/ijs.2023.64.8.17

    Article  Google Scholar 

  • Afrin S, Huang JJ, Luo ZY (2015) JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci Bull 60:121062–121072

    Article  Google Scholar 

  • Albayrak İ, Demirci T, Baydar NG (2024) Enhancement of in vitro production of tropane alkaloids and phenolic compounds in Hyoscyamus niger by culture types and elicitor treatments. Plant Cell Tissue Organ Cult 156(3):72

    Article  CAS  Google Scholar 

  • Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li Z, Kinoshita T, Ecker JR, Schroeder JI (2016) An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signalling. Sci Rep 6(1):28941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Mujib A, Gulzar B, Zafar N (2019) Essential oil yield estimation by Gas chromatography–mass spectrometry (GC–MS) after Methyl jasmonate (MeJA) elicitation in in vitro cultivated tissues of Coriandrum sativum L. 3 Biotech. https://doi.org/10.1007/s13205-019-1936-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsoufi ASM, Pączkowski C, Szakiel A, Długosz M (2019) Effect of jasmonic acid and chitosan on triterpenoid production in Calendula officinalis hairy root cultures. Phytochem Lett 31:5–11

    Article  CAS  Google Scholar 

  • Alwakil NH, Mohamad Annuar MS, Jalil M (2022) Synergistic effects of plant growth regulators and elicitors on α-humulene and zerumbone production in Zingiber zerumbet Smith adventitious root cultures. Molecules 27(15):4744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson MX, Hamberg M, Kourtchenko O, Brunnstro Å, McPhail KL, Gerwick WH, Go C, Feussner I, Ellerstro M (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana: formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside E World. J Biol Chem 281(42):31528–31537

    CAS  PubMed  Google Scholar 

  • Anjum S, Anjum I, Hano C, Kousar S (2019) Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: current status and future outlooks. RSC Adv 9(69):40404–40423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arano-Varela H, Cruz-Sosa F, Estrada-Zúñiga ME, Fernández FJ (2020) Effects of phenylalanine and methyl jasmonate on verbascoside production in Buddleja cordata Kunth cell suspension cultures. S Afr J Bot 135:41–49

    Article  CAS  Google Scholar 

  • Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32(9):1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Asigbaase M, Adusu D, Anaba L, Abugre S, Kang-Milung S, Acheamfour SA, Adamu I, Ackah DK (2023) Conservation and economic benefits of medicinal plants: Insights from forest-fringe communities of Southwestern Ghana. Trees for People 14:100462

    Article  Google Scholar 

  • Autaijamsripon J, Jirakiattikul Y, Rithichai P, Itharat A (2023) Effect of phenylalanine and methyl jasmonate on secondary metabolite production by shoot cultures of holy basil, purple-type (Ocimum sanctum L.). Sci Technology Asia 28:229–239

    Google Scholar 

  • Baek S, Han JE, Ho TT, Park SY (2022) Development of hairy root cultures for biomass and triterpenoid production in Centella asiatica. Plants 11(2):148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj K, Silva AS, Atanassova M, Sharma R, Nepovimova E, Musilek K, Sharma R, Alghuthaymi MA, Dhanjal DS, Nicoletti M, Sharma B (2021) Conifers phytochemicals: a valuable forest with therapeutic potential. Molecules 26(10):3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya D, Sinha R, Ghanta S, Chakraborty A, Hazra S, Chattopadhyay S (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10:1–12

    Article  Google Scholar 

  • Bisht A, Singh L, Pandey A, Pandey V, Dasila K, Bhatt ID, Pande V (2023) Elicitor-induced phytochemicals production in Berberis lycium Royle. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2023.116735

    Article  Google Scholar 

  • Boter M, Golz JF, Giménez-Ibañez S, Fernandez-Barbero G, Franco-Zorrilla JM, Solano R (2015) FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate. Plant Cell 27(11):3160–3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, Bellvert F, Bertrand C, Bendahmane M (2009) Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J60(6):1070–1080

    Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    Article  CAS  PubMed  Google Scholar 

  • Cai XT, Xu P, Zhao PX, Liu R, Yu LH, **ang CB (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun 5(1):5833

    Article  CAS  PubMed  Google Scholar 

  • Canonne J, Froidure Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6(1):13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blando F, Mita G (2011) Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. Plant Biol 13(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Checker VG, Kushwaha HR, Kumari P, Yadav S (2018) Role of phytohormones in plant defense: signaling and cross talk. Molecular aspects of plant-pathogen interaction, pp 159–184

    Google Scholar 

  • Chen Y, Feng P, Tang B, Hu Z, **e Q, Zhou S, Chen G (2022a) The AP2/ERF transcription factor SlERF. F5 functions in leaf senescence in tomato. Plant Cell Rep 41(5):1181–1195

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA (2022b) Role of promising secondary metabolites to confer resistance against environmental stresses in crop plants: Current scenario and future perspectives. Front Plant Sci 13:881032

    Article  PubMed  PubMed Central  Google Scholar 

  • Chodisetti B, Rao K, Gandi S, Giri A (2015) Gymnemic acid enhancement in the suspension cultures of Gymnema sylvestre by using the signaling molecules—methyl jasmonate and salicylic acid. In Vitro Cell Dev Biol Plant 51:88–92

    Article  CAS  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17(10):594–605

    Article  CAS  PubMed  Google Scholar 

  • Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helv Chim Acta 45(2):675–685

    Article  CAS  Google Scholar 

  • Dey A, Nandy S, Nongdam P, Tikendra L, Mukherjee A, Mukherjee S, Pandey DK (2020) Methyl jasmonate and salicylic acid elicit indole alkaloid production and modulate antioxidant defence and biocidal properties in Rauvolfia serpentina Benth. Ex Kurz. in vitro cultures. S Afr J Sci 135:1–17

    CAS  Google Scholar 

  • Dhiman N, Patial V, Bhattacharya A (2018) The current status and future applications of hairy root cultures. Biotechnol Approaches Med Aromatic: Plants Conserv, Genetic Improv Utilization. https://doi.org/10.1007/978-981-13-0535-1_5

    Article  Google Scholar 

  • Ding F, Wang C, Xu N, Zhang S, Wang M (2022) SlMYC2 mediates jasmonate-induced tomato leaf senescence by promoting chlorophyll degradation and repressing carbon fixation. Plant Physiol Biochem 180:27–34

    Article  CAS  PubMed  Google Scholar 

  • Emami M, Estaji A, Ghanbari A, Khazaei Z, Ghorbani Ghouzhdi H (2023) The effect of methyl jasmonate and light on licorice secondary metabolites (Glycyrrhiza glabra L.) under in vitro condition. J Plant Process Funct 12(54):91–104

    Google Scholar 

  • Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184(1):39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faizal A, Sari AV (2019) Enhancement of saponin accumulation in adventitious root culture of Javanese ginseng (Talinum paniculatum Gaertn.) through methyl jasmonate and salicylic acid elicitation. AJB 18(6):130–135

    CAS  Google Scholar 

  • Fang S, Zhang C, Qiu S, **ao Y, Chen K, Lv Z, Chen W (2023) SbWRKY75-and SbWRKY41-mediated jasmonic acid signaling regulates baicalin biosynthesis. Front Plant Sci 14:1213662

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486(7402):228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gai QY, Jiao J, Wang X, Zang YP, Niu LL, Fu YJ (2019) Elicitation of Isatis tinctoria L. hairy root cultures by salicylic acid and methyl jasmonate for the enhanced production of pharmacologically active alkaloids and flavonoids. Plant Cell Tissue Organ Cult 137:77–86

    Article  CAS  Google Scholar 

  • Gatz C (2013) From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol Plant-Microbe Interact 26(2):151–159

    Article  CAS  PubMed  Google Scholar 

  • Genva M, Obounou Akong F, Andersson MX, Deleu M, Lins L, Fauconnier ML (2019) New insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. Phytochem Rev 18:343–358

    Article  CAS  Google Scholar 

  • Gharari Z, Bagheri K, Sharafi A (2023) Enhanced terpenoids production of elicited hairy root cultures of Scutellaria bornmuelleri. Braz Arch Biol Technol 66:23210435

    Article  Google Scholar 

  • Ghorbel M, Brini F, Sharma A, Landi M (2021) Role of jasmonic acid in plants: the molecular point of view. Plant Cell Rep 40:1471–1494

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Gorham SR, Weiner AI, Yamadi M, Krogan NT (2018) HISTONE DEACETYLASE 19 and the flowering time gene FD maintain reproductive meristem identity in an age-dependent manner. J Exp Bot 69(20):4757–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gornik K, Badowiec A, Weidner S (2014) The effect of seed conditioning, short-term heat shock and salicylic, jasmonic acid or brasinolide on sunflower (Helianthus annuus L.) chilling resistance and polysome formation. Acta Physiol Plant 36:2547–2554

    Article  CAS  Google Scholar 

  • Górski F, Gerotti GM, Gonçalves JE, Gazim ZC, Magalhães HM (2023) Methyl jasmonate and copper activate volatiles and antioxidant mechanisms in ‘Grecco a Palla’ basil produced in vitro. J Crop Sci Biotechnol 26(5):615–629

    Article  Google Scholar 

  • Guan L, Denkert N, Eisa A, Lehmann M, Sjuts I, Weiberg A, Soll J, Meinecke M, Schwenkert S (2019) JASSY a chloroplast outer membrane protein required for jasmonate biosynthesis. Proc Acad Sci 116(21):10568–10575

    Article  CAS  Google Scholar 

  • Guan Y, Ding L, Jiang J, Shentu Y, Zhao W, Zhao K, Zhang X, Song A, Chen S, Chen F (2021) Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. Hortic Res. https://doi.org/10.1038/s41438-021-00525-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Guru A, Dwivedi P, Kaur P, Pandey DK (2022) Exploring the role of elicitors in enhancing medicinal values of plants under in vitro condition. S Afr J Bot 149:1029–1043

    Article  CAS  Google Scholar 

  • Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24(6):2515–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder M, Sarkar S, Jha S (2019) Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19(12):880–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao H, Lei C, Dong Q, Shen Y, Chi J, Ye H, Wang H (2014) Effects of exogenous methyl jasmonate on the biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma. Appl Biochem Biotechnol 173:2198–2210

    Article  CAS  PubMed  Google Scholar 

  • Harms K, Ramirez I, Pena-Cortés H (1998) Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol 118(3):1057–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazman M, Hause B, Eiche E, Nick P, Riemann M (2015) Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity. J Exp Bot 66(11):3339–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazra S, Bhattacharyya D, Chattopadhyay S (2017) Methyl jasmonate regulates podophyllotoxin accumulation in Podophyllum hexandrum by altering the ROS-responsive podophyllotoxin pathway gene expression additionally through the down regulation of few interfering miRNAs. Front Plant Sci 8:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-García J, Briones-Moreno A, Blázquez MA (2021) Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in cell & developmental biology, vol 109. Academic Press, pp 46–54

    Google Scholar 

  • Hewedy OA, Elsheery NI, Karkour AM, Elhamouly N, Arafa RA, Mahmoud GAE, Dawood MFA, Hussein WE, Mansour A, Amin DH, Allakhverdiev SI (2023) Jasmonic acid regulates plant development and orchestrates stress response during tough times. Environ Exp Bot 208:105260

    Article  CAS  Google Scholar 

  • Horbowicz M, Wiczkowski W, Koczkodaj D, Saniewski M (2011) Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Hung 62:265–278

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Wang Y, Tang L, Tong X, Wang L, Liu L, Huang S, Zhang J (2019) SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. Iscience 16:499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in arabidopsis. Plant Cell 25(8):2907–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68(6):1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Israeli A, Ori N, Sun TP (2018a) The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. Plant Cell 30(8):1710–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Shao S, Zheng C, Sun Z, Shi J, Yu J, Qi Z, Shi K (2018b) Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta 247:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Ilyas N, Gull R, Mazhar R, Saeed M, Kanwal S, Shabir S, Bibi F (2017) Influence of salicylic acid and jasmonic acid on wheat under drought stress. Commun Soil Sci Plant Anal 48(22):2715–2723

    CAS  Google Scholar 

  • Jang G, Choi YD (2018) Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid. Plant Signal Behav 13:e1451707

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang G, Chang SH, Um TY, Lee S, Kim JK, Choi YD (2017) Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 7(1):10212

    Article  PubMed  PubMed Central  Google Scholar 

  • Jauhari N, Bharadwaj R, Sharma N, Bharadvaja N (2019) Assessment of bacoside production, total phenol content and antioxidant potential of elicited and non-elicited shoot cultures of (Bacopa monnieri L.). Environmental Sustainability 2:441–453

    Article  CAS  Google Scholar 

  • Jeyasri R, Muthuramalingam P, Karthick K, Shin H, Choi SH, Ramesh M (2023) Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. Plant Cell Tissue Organ Cult 153(3):447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Liang G, Yang S, Yu D (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid–and auxin-mediated signaling in jasmonic acid–induced leaf senescence. Plant Cell 26(1):230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirakiattikul Y, Rithichai P, Boonyeun T, Ruangnoo S, Itharat A (2020) Improvement of dioscorealide B production by elicitation in shoot cultures of Dioscorea membranacea Pierre ex Prain & Burkill. Physiol Mol Biol Plants 26:585–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirakiattikul Y, Rithichai P, Songsoem K, Itharat A (2021) Elicitation of salicylic acid on secondary metabolite production and antioxidant activity of in vitro Musa acuminata L. cv. ‘Gros Michel’Shoots. Curr Appl Sci 21:569–578

    Google Scholar 

  • Joshi N, Agarwal K, Ghosh S (2023) Improved antioxidant metabolism in shoot cultures of Ruta graveolens (L.) in response to methyl jasmonate and abscisic acid. Plant Cell Tissue Organ Cult 153(2):367–376

    Article  CAS  Google Scholar 

  • Kamińska M (2021) Role and activity of jasmonates in plants under in vitro conditions. Plant Tissue Cult Lett 146(3):425–447

    Article  Google Scholar 

  • Kandoudi W, Németh-Zámboriné É (2022) Stimulating secondary compound accumulation by elicitation: is it a realistic tool in medicinal plants in vivo. Phytochem Rev 21(6):2007–2025

    Article  CAS  Google Scholar 

  • Kapoor S, Sharma A, Bhardwaj P, Sood H, Saxena S, Chaurasia OP (2019) Enhanced production of phenolic compounds in compact callus aggregate suspension cultures of Rhodiola imbricata Edgew. Appl Biochem Biotechnol 187:817–837

    Article  CAS  PubMed  Google Scholar 

  • Karami M, Naghavi MR, Nasiri J, Farzin N (2023) Methyl jasmonate and β-cyclodextrin shake hands to boost withaferin A production from the hairy root culture of Withania somnifera

  • Khataee E, Karimi F, Razavi K (2019) Alkaloids production and antioxidant properties in Catharanthus roseus (L.) G. Don. Shoots and study of alkaloid biosynthesis-related gene expression levels in response to methyl jasmonate and putrescine treatments as eco-friendly elicitors. Biologia Futura 70:38–46

    Article  CAS  PubMed  Google Scholar 

  • Kianersi F, Amin Azarm D, Fatemi F, Jamshidi B, Pour-Aboughadareh A, Janda T (2023) The influence of methyl jasmonate on expression patterns of rosmarinic acid biosynthesis genes, and phenolic compounds in different species of Salvia subg. Perovskia Kar L. Genes 14(4):871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim OT, Bang KH, Shin YS, Lee MJ, Jung SJ, Hyun DY, Kim YC, Seong NS, Cha SW, Hwang B (2007) Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Rep 26:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk T, Sitarek P, Merecz-Sadowska A, Szyposzyńska M, Spławska A, Gorniak L, Bijak M, Śliwiński T (2021) Methyl jasmonate effect on betulinic acid content and biological properties of extract from Senna obtusifolia transgenic hairy roots. Molecules 26(20):6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan ML, Roy A, Bharadvaja N (2019) Elicitation effect on the production of asiaticoside and asiatic acid in shoot, callus, and cell suspension culture of Centella asiatica. J Appl Pharm Sci 9(6):067–074

    Article  CAS  Google Scholar 

  • Krzyzanowska J, Czubacka A, Pecio L, Przybys M, Doroszewska T, Stochmal A, Oleszek W (2012) The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha× piperita cell suspension culturese. Plant Cell Tissue Organ Cult 108:73–81

    Article  CAS  Google Scholar 

  • Kumar A, Nirmal P, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, Sneha K, Oz F (2023) Major phytochemicals: recent advances in health benefits and extraction method. Molecules 28(2):887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küpper FC, Gaquerel E, Cosse A, Adas F, Peters A, Müller DG, Kloareg B, Salaün JP, Potin P (2009) Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant Cell Physiol 50:4789–4800

    Article  Google Scholar 

  • Lakehal A, Dob A, Rahneshan Z, Novák O, Escamez S, Alallaq S, Strnad M, Tuominen H, Bellini C (2020) ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. New Phytol 228(5):1611–1626

    Article  CAS  PubMed  Google Scholar 

  • Lalotra S, Hemantaranjan A, Yashu BR, Srivastava R, Kumar S (2020) Jasmonates: an emerging approach in biotic and abiotic stress tolerance. Plant science-structure anatomy and physiology in plants cultured in vivo and in vitro. IntechOpen

    Google Scholar 

  • Largia MJV, Pothiraj G, Shilpha J, Ramesh M (2015) Methyl jasmonate and salicylic acid synergism enhances bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell Tissue Organ Cult 122:9–20

    Article  CAS  Google Scholar 

  • Li Q, Zheng J, Li S, Huang G, Skilling SJ, Wang L, Li L, Li M, Yuan L, Liu P (2017) Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol Plant 10(5):695–708

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yang Y, Zhang Q, Liu N, Xu Q, Hu L (2018) Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude. PLoS ONE 13(6):0198885

    Article  Google Scholar 

  • Li J, Li B, Luo L, Cao F, Yang B, Gao J, Yan Y, Zhang G, Peng L, Hu B (2020) Increased phenolic acid and tanshinone production and transcriptional responses of biosynthetic genes in hairy root cultures of Salvia przewalskii Maxim. Treated with methyl jasmonate and salicylic acid. Mol Biol Rep 47:8565–8578

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen L, Ding X, Fan W, Liu J (2022) Transcriptome analysis reveals crosstalk between the abscisic acid and jasmonic acid signaling pathways in rice-mediated defense against Nilaparvata lugens. Int J Mol Sci 23(11):6319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lischweski S, Muchow A, Guthörl D, Hause B (2015) Jasmonates act positively in adventitious root formation in petunia cuttings. BMC Plant Biol 15:1–10

    Article  Google Scholar 

  • Liu L, Li H, Zeng H, Cai Q, Zhou X, Yin C (2016) Exogenous jasmonic acid and cytokinin antagonistically regulate rice flag leaf senescence by mediating chlorophyll degradation, membrane deterioration, and senescence-associated genes expression. J Plant Growth Regul 35:366–376

    Article  CAS  Google Scholar 

  • Liu Y, Yin Q, Dai B, Wang KL, Lu L, Qaseem MF, Wang J, Li H, Wu AM (2021) The key physiology and molecular responses to potassium deficiency in Neolamarckia cadamba Ind Crops. Prod 162:113260

    CAS  Google Scholar 

  • Liu Y, Zhou J, Lu M, Yang J, Tan X (2022) The core jasmonic acid-signalling module CoCOI1/CoJAZ1/CoMYC2 are involved in jas mediated growth of the pollen tube in Camellia oleifera. Curr Issues Mol Biol 44(11):5405–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CF, Yang N, Teng RM, Li JW, Chen Y, Hu ZH, Li T, Zhuang J (2023) Exogenous methyl jasmonate and cytokinin antagonistically regulate lignin biosynthesis by mediating CsHCT expression in Camellia sinensis. Protoplasma 260(3):869–884

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Wang C, Wang W, Wang G, Liu M, Mao G (2014) Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. Plant Cell Rep 33:617–631

    Article  CAS  PubMed  Google Scholar 

  • Madani V, Zare N, Asgahri Zakaria R (2021) The effect of elicitors on the biochemical properties and expression of the genes involved in sesquiterpenes biosynthesis pathway in the hairy root cultures of medicinal plant Valeriana officinalis L. IJPB 12(4):19–42

    Google Scholar 

  • Mahendran G, Verma N, Singh M, Shanker K, Banerjee S, Kumar B, Rahman L (2022) Elicitation enhances swerchirin and 1, 2, 5, 6-tetrahydroxyxanthone production in hairy root cultures of Swertia chirayita (Roxb) H. Karst Ind Crops Prod 177:114488

    Article  CAS  Google Scholar 

  • Matsui R, Amano N, Takahashi K, Taguchi Y, Saburi W, Mori H, Kondo N, Matsuda K, Matsuura H (2017) Elucidation of the biosynthetic pathway of cis-jasmone in Lasiodiplodia theobromae. Sci Rep 7(1):6688

    Article  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126(5):969–980

    Article  CAS  PubMed  Google Scholar 

  • Miriam O, Moyano E, Bonfill M, Expósito O, Palazón J, Cusidó RM (2010) An approach to the molecular mechanism of methyl jasmonate and vanadyl sulphate elicitation in Taxus baccata cell cultures: the role of txs and bapt gene expression. Biochem Eng J 53(1):104–111

    Article  Google Scholar 

  • Monte I, Franco-Zorrilla JM, García-Casado G, Zamarreño AM, García-Mina JM, Nishihama R, Kohchi T, Solano R (2019) A single JAZ repressor controls the jasmonate pathway in Marchantia polymorpha. Mol Plant 12(2):185–198

    Article  CAS  PubMed  Google Scholar 

  • Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I (2011) Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65(6):949–957

    Article  CAS  PubMed  Google Scholar 

  • Nabi N, Singh S, Saffeullah P (2021) Responses of in vitro cell cultures to elicitation: regulatory role of jasmonic acid and methyl jasmonate: a review. In Vitro Cell Dev Biol 57:341–355

    Article  CAS  Google Scholar 

  • Nadir DS, Alwan AM (2022) Effect of abiotic elicitor methyl jasmonate on production of rutin in callus cultures of Abutilon hirtum L. J Appl Nat Sci 14(4):1493–1499

    CAS  Google Scholar 

  • Nguyen KV, Pongkitwitoon B, Pathomwichaiwat T, Viboonjun U, Prathanturarug S (2019) Effects of methyl jasmonate on the growth and triterpenoid production of diploid and tetraploid Centella asiatica (L.) Urb. hairy root cultures. Sci Rep 9(1):18665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TH, Goossens A, Lacchini E (2022a) Jasmonate: a hormone of primary importance for plant metabolism. Curr Opin Plant Biol 67:102197

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TN, Tuan PA, Ayele BT (2022b) Jasmonate regulates seed dormancy in wheat via modulating the balance between gibberellin and abscisic acid. J Exp Bot 73(8):2434–2453

    Article  CAS  PubMed  Google Scholar 

  • Ning YQ, Chen Q, Lin RN, Li YQ, Li L, Chen S, He XJ (2019) The HDA 19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner. Plant J 98(3):448–464

    Article  CAS  PubMed  Google Scholar 

  • Nitschke S, Cortleven A, Iven T, Feussner I, Havaux M, Riefler M, Schmülling T (2016) Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient arabidopsis plants. Plant Cell 28(7):1616–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otto M, Naumann C, Brandt W, Wasternack C, Hause B (2016) Activity regulation by heteromerization of Arabidopsis allene oxide cyclase family members. Plants 5(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Pablo Arias J, Mendoza D, Penuela M, Arias M (2018) Cardiac glycoside production in plant cell suspension culture of Thevetia peruviana at bench bioreactor scale. Vitro Cell Dev Biol, vol 54. Springer, NY, pp s47–s47

    Google Scholar 

  • Partap M, Kumar P, Kumar A, Joshi R, Kumar D, Warghat AR (2020) Effect of elicitors on morpho-physiological performance and metabolites enrichment in Valeriana Jatamansi cultivated under aeroponic conditions. Front Plant Sci 11:01263

    Article  PubMed  PubMed Central  Google Scholar 

  • Peian Z, Haifeng J, Peijie G, Sadeghnezhad E, Qianqian P, Tianyu D, Teng L, Huanchun J, **ggui F (2021) Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chem 337:127772

    Article  PubMed  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Piskurewicz U, Lopez-Molina L (2009) The GA-signaling repressor RGL3 represses testa rupture in response to changes in GA and ABA levels. Plant Signal Behav 4(1):63–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluskota WE, Pupel P, Głowacka K, Okorska SB, Jerzmanowski A, Nonogaki H, Górecki RJ (2019) Jasmonic acid and ethylene are involved in the accumulation of osmotin in germinating tomato seeds. J Plant Physiol 232:74–81

    Article  CAS  PubMed  Google Scholar 

  • Qiong TA, Zheng XD, Jun GU, Ting YU (2022) Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways. J Integr Agric 21(3):697–709

    Article  Google Scholar 

  • Qiu K, Li Z, Yang Z, Chen J, Wu S, Zhu X, Gao S, Gao J, Ren G, Kuai B, Zhou X (2015) EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet 11(7):1005399

    Article  Google Scholar 

  • Rajan M, Feba KS, Chandran V, Shahena S, Mathew L (2020) Enhancement of rhamnetin production in Vernonia anthelmintica (L.) Willd. Cell suspension cultures by eliciting with methyl jasmonate and salicylic acid. Physiol Mol Biol Plants 26:1531–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, Tian Y, Zhang C, Qin Y, Liu M, Niu S, Li Y, Chen J (2023a) The JASMONATE ZIM-domain–OPEN STOMATA1 cascade integrates jasmonic acid and abscisic acid signaling to regulate drought tolerance by mediating stomatal closure in poplar. J Exp Bot 74(1):443–457

    Article  CAS  PubMed  Google Scholar 

  • Rao Y, Peng T, Xue S (2023b) Mechanisms of plant saline-alkaline tolerance. J Plant Physiol 281:153916

    Article  CAS  PubMed  Google Scholar 

  • Rattan S, Warghat AR (2023) Comparative analysis of salidroside and rosavin accumulation and expression analysis of biosynthetic genes in salicylic acid and methyl jasmonate elicited cell suspension culture of Rhodiola imbricata (Edgew.). Front Plant Sci 1:98116667

    Google Scholar 

  • Ravazzolo L, Ruperti B, Frigo M, Bertaiola O, Pressi G, Malagoli M, Quaggiotti S (2022) C3H expression is crucial for methyl jasmonate induction of chicoric acid production by Echinacea purpurea (L.) moench cell suspension cultures. Int J Mol Sci 23(19):11179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat V, Ghildiyal A, Singh L, Jugran AK, Bhatt ID, Nandi SK, Pande V (2020) Methyl jasmonate induced polyphenols and antioxidant production in callus suspension culture of Nardostachys jatamansi. Plant Biosyst-an Int J Dealing All Asp Plant Biol 154(6):851–859

    Google Scholar 

  • Rawat JM, Pandey S, Rawat B, Purohit S, Anand J, Negi AS, Thakur A, Mahmoud MH, El-Gazzar AM, Batiha GES (2023) In vitro production of steroidal saponin, total phenols and antioxidant activity in callus suspension culture of Paris polyphylla Smith: an important Himalayan medicinal plant. Front Plant Sci. https://doi.org/10.3389/fpls.2023.1225612

    Article  PubMed  PubMed Central  Google Scholar 

  • Raya-González J, Pelagio-Flores R, López-Bucio J (2012) The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana. J Plant Physiol 169:141348–141358

    Article  Google Scholar 

  • Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE (2012) A regulatory network for coordinated flower maturation. PLoS Genet 8(2):1002506

    Article  Google Scholar 

  • Ren C, Han C, Peng W, Huang Y, Peng Z, **ong X, Zhu Q, Gao B, **e D (2009) A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol 151(3):1412–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ru M, Li Y, Guo M, Chen L, Tan Y, Peng L, Liang Z (2022) Increase in rosmarinic acid accumulation and transcriptional responses of synthetic genes in hairy root cultures of Prunella vulgaris induced by methyl jasmonate. Plant Cell Tissue Organ Cult 149:371–379

    Article  CAS  Google Scholar 

  • Rubio-Rodríguez E, Vera-Reyes I, Sepúlveda-García EB, Ramos-Valdivia AC, Trejo-Tapia G (2021) Secondary metabolite production and related biosynthetic genes expression in response to methyl jasmonate in Castilleja tenuiflora Benth. in vitro plants. Plant Cell Tiss Org Cult 144(3):519–532

    Article  Google Scholar 

  • Saeed S, Ali H, Khan T, Kayani W, Khan MA (2017) Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol Mol Biol Plants 23:229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saniewski M, Ueda J, Miyamoto K (2002) Relationships between jasmonates and auxin in regulation of some physiological processes in higher plants. Acta Physiol Plant 24:211–220

    Article  CAS  Google Scholar 

  • Santos VAD, Coppede JDS, Dias NB, Pereira AMS, Palma MS, Furlan M (2022) Proteome profiling of methyl jasmonate elicitation of Maytenus ilicifolia in vitro roots reveals insights into sesquiterpene pyridine alkaloids. Plant Cell Tissue Organ Cult 151(3):551–563

    Article  CAS  Google Scholar 

  • Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, Serrano M, Valero D (2011) Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chem 124(3):964–970

    Article  CAS  Google Scholar 

  • Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis–structure, function, regulation. Phytochem 70(13–14):1532–1538

    Article  CAS  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):230

    Article  Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152(4):1940–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selwal N, Goutam U, Akhtar N, Sood M, Kukreja S (2024) Elicitation:“A Trump Card” for enhancing secondary metabolites in plants. J Plant Growth Regul. https://doi.org/10.1007/s00344-024-11294-y

    Article  Google Scholar 

  • Sharma K, Zafar R (2016) Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures. Plant Physiol Biochem 103:24–30

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Yadav S, Srivastava A, Shrivastava N (2013) Methyl jasmonate mediates upregulation of bacoside A production in shoot cultures of Bacopa monnieri. Biotechnol Lett 35:1121–1125

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Sharma M, Jamsheer KM, Laxmi A (2022a) Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. Plant Cell Environ 45(5):1554–1572

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Thakur M, Sharma P, Dutt B, Sharma YP (2022b) In vitro propagation from seeds and enhanced synthesis of podophyllotoxin from root callus of Sino Podophyllum hexandrum Royle TS Ying (Himalayan Mayapple)−An endangered medicinal plant. Ind Crops Prod 186:115300

    Article  CAS  Google Scholar 

  • Sharma N, Thakur M, Sharma P, Sharma YP, Dutt B (2022c) In vitro propagation from rhizomes, molecular evaluation and podophyllotoxin production in Himalayan May Apple (Sinopodophyllum hexandrum Royle TS Ying): an endangered medicinal plant. Plant Cell Tissue Organ Cult 149(1–2):159–173

    Article  CAS  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD (2013) A t MYB 44 regulates WRKY 70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signalling. Plant J 73(3):483–495

    Article  CAS  PubMed  Google Scholar 

  • Shoja AA, Çirak C, Ganjeali A, Cheniany M (2022) Stimulation of phenolic compounds accumulation and antioxidant activity in in vitro culture of Salvia tebesana Bunge in response to nano-TiO2 and methyl jasmonate elicitors. Plant Cell Tissue Organ Cult 149(1–2):423–440

    Article  CAS  Google Scholar 

  • Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M (2022) Jasmonates in plant growth and development and elicitation of secondary metabolites: an updated overview. Front Plant Sci 13:942789

    Article  PubMed  PubMed Central  Google Scholar 

  • Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, **e D (2014) Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26(1):263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood M (2023) Jasmonates:“The Master Switch” for regulation of developmental and stress responses in plants. J Plant Growth Regul 42(8):5247–5265

    Article  CAS  Google Scholar 

  • Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150(3):1310–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukito A, Tachibana S (2016) Effect of methyl jasmonate and salycilic acid synergism on enhancement of bilobalide and ginkgolide production by immobilized cell cultures of Ginkgo biloba. Bioresour Bioprocess 3(1):1–11

    Article  Google Scholar 

  • Sułkowska-Ziaja K, Galanty A, Szewczyk A, Paśko P, Kała K, Apola A, Podolak I, Muszyńska B (2023) Effect of methyl jasmonate elicitation on triterpene production and evaluation of cytotoxic activity of mycelial culture extracts of Ganoderma applanatum (Pers) Pat. Plants 12(2):294

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun TP (2011) The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants. Curr Biol 21(9):R338–R345

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21(5):1495–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Chen Q, Qi L, Jiang H, Li S, Xu Y, Liu F, Zhou W, Pan J, Li X, Palme K (2011) Jasmonate modulates endocytosis and plasma membrane accumulation of the arabidopsis PIN2 protein. New Phytol 191(2):360–375

    Article  CAS  PubMed  Google Scholar 

  • Suryawanshi S, Kshirsagar P, Kamble P, Bapat V, Jadhav J (2022) Systematic enhancement of l-DOPA and secondary metabolites from Mucuna imbricata: Implication of precursors and elicitors in callus culture. S Afr J Bot 144:419–429

    Article  CAS  Google Scholar 

  • Sykłowska-Baranek K, Kamińska M, Pączkowski C, Pietrosiuk A, Szakiel A (2022) Metabolic modifications in terpenoid and steroid pathways triggered by methyl jasmonate in Taxus× media hairy roots. Plants 11(9):1120

    Article  PubMed  PubMed Central  Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137(3):835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torkamani MRD, Abbaspour N, Jafari M, Samadi A (2014) Elicitation of valerenic acid in the hairy root cultures of Valeriana officinalis L (Valerianaceae). Trop J Pharm Res 13(6):943–949

    Article  CAS  Google Scholar 

  • Twaij BM, Hasan MN (2022) Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. Int J Plant Sci 13(1):4–14

    CAS  Google Scholar 

  • Ueda J, Kato J (1982) Inhibition of cytokinin-induced plant growth by jasmonic acid and its methyl ester. Physiol Plant 54(3):249–252

    Article  CAS  Google Scholar 

  • Ueda KZ, Haifeng J, Peijie G, Sadeghnezhad E, Qianqian P, Tianyu D, Teng L, Huanchun J, **ggui F (2021) Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chem 337:127772

    Article  Google Scholar 

  • Ullah C, Schmidt A, Reichelt M, Tsai CJ, Gershenzon J (2022) Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar. New Phytol 235(2):701–717

    Article  CAS  PubMed  Google Scholar 

  • Uyehara AN, Del Valle-Echevarria AR, Hunter CT, Nelissen H, Demuynck K, Cahill JF, Jander G, Muszynski MG (2019) Cytokinin promotes jasmonic acid accumulation in the control of maize leaf growth. Biorxiv 221:760

    Google Scholar 

  • Vu PTB, Bui AL, Nguyen NN, Quach PND (2022) In vitro growth and content of vincristine and vinblastine of Catharanthus roseus L. hairy roots in response to precursors and elicitors. Plant Sci Today 9(1):21–28

    Article  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Guo LP, **e T, Yang J, Tang JF, Li X, Wang X, Huang LQ (2014) Different secondary metabolic responses to MeJA treatment in shikonin-proficient and shikonin-deficient cell lines from Arnebia euchroma (Royle) Johnst. Plant Cell Tissue Organ Cult 119:587–598

    Article  CAS  Google Scholar 

  • Wang F, Guo Z, Li H, Wang M, Onac E, Zhou J, **a X, Shi K, Yu J, Zhou Y (2016) Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol 170(1):459–471

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020a) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J (2020b) Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytol 228(4):1336–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gao M, Li Y, Zhang J, Su H, Cao M, Liu Z, Zhang X, Zhao B, Guo YD, Zhang N (2022) The transcription factor SlWRKY37 positively regulates jasmonic acid-and dark-induced leaf senescence in tomato. J Exp Bot 73(18):6207–6225

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Luo JF, Liu R, Liu X, Jiang J (2023) Gibberellins regulate root growth by antagonizing the jasmonate pathway in tomato plants in response to potassium deficiency. Sci Hortic 309:111693

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Feussner I (2018) The oxylipin pathways: biochemistry and function. Annu Rev Plant Biol 69:363–386

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111(6):1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5(1):63–77

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Strnad M (2018) Jasmonates: News on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int J Mol Sci 19(9):2539

    Article  PubMed  PubMed Central  Google Scholar 

  • Woch N, Laha S, Gudipalli P (2023) Salicylic acid and jasmonic acid induced enhanced production of total phenolics, flavonoids, and antioxidant metabolism in callus cultures of Givotia moluccana (L.) Sreem. In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-023-10335-7

    Article  Google Scholar 

  • Xu P, Zhao PX, Cai XT, Mao JL, Miao ZQ, **ang CB (2020) Integration of jasmonic acid and ethylene into auxin signaling in root development. Front Plant Sci 11:271

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan C, **e D (2015) Jasmonate in plant defence: sentinel or double agent? J Exp Bot 13(9):1233–1240

    Google Scholar 

  • Yan S, McLamore ES, Dong S, Gao H, Taguchi M, Wang N, Zhang T, Su X, Shen Y (2015) The role of plasma membrane H+-ATP ase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. Plant J 83(4):638–649

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci 10:1349

    Article  PubMed  PubMed Central  Google Scholar 

  • Yazdanian E, Golkar P, Vahabi MR, Taghizadeh M (2022) Elicitation effects on some secondary metabolites and antioxidant activity in callus cultures of Allium jesdianum Boiss. & Buhse.: methyl jasmonate and putrescine. Appl Biochem Biotechnol 194(2):601–619

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Adachi Y, Nakamura Y, Munemasa S, Mori IC, Murata Y (2016) Involvement of OST1 protein kinase and PYR/PYL/RCAR receptors in methyl jasmonate-induced stomatal closure in Arabidopsis guard cells. Plant Cell Physiol 57(8):1779–1790

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in arabidopsis. Development. https://doi.org/10.1242/dev.030585

    Article  PubMed  Google Scholar 

  • Yoshihara T, Iino M (2007) Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and-independent gravity signaling pathways. Plant Physiol 48(5):678–688

    CAS  Google Scholar 

  • Yousefian S, Lohrasebi T, Farhadpour M, Haghbeen K (2020) Effect of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures. Plant Cell Tissue Organ Cult 142(2):285–297

    Article  CAS  Google Scholar 

  • Yu J, Zhang Y, Di C, Zhang Q, Zhang K, Wang C, You Q, Yan H, Dai SY, Yuan JS, Xu W (2016) JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. J Exp Bot 67(3):751–762

    Article  CAS  PubMed  Google Scholar 

  • Zamora O, Schulze S, Azoulay-Shemer T, Parik H, Unt J, Brosché M, Schroeder JI, Yarmolinsky D, Kollist H (2021) Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO2, abscisic acid, darkness, vapor pressure deficit and ozone. Plant J 108(1):134–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zander M, La Camera S, Lamotte O, Métraux JP, Gatz C (2010) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61(2):200–210

    Article  CAS  PubMed  Google Scholar 

  • Zander M, Chen S, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5(4):831–840

    Article  CAS  PubMed  Google Scholar 

  • Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C (2015) Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27(10):2814–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhu Z, An F, Hao D, Li P, Song J, Yi C, Guo H (2014) Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26(3):1105–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Wang A, Qin M, Qin X, Yang S, Su S, Sun Y, Zhang L (2021) Direct and indirect somatic embryogenesis induction in Camellia oleifera (Abel). Front Plant Sci 12:644389

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhou H, Tang Y, Luo Y, Zhang Z (2022) Hydrogen peroxide regulated salicylic acid– and jasmonic acid–dependent systemic defenses in tomato seedlings. Food Sci Technol 42:e54920

    Article  Google Scholar 

  • Zhang J, Chen W, Li X, Shi H, Lv M, He L, Bai W, Cheng S, Chu J, He K, Gou X (2023) Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling. Plant Physiol 193(2):1561–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Tang H (2020) Enhanced production of valtrate in hairy root cultures of Valeriana jatamansi Jones by methyl jasmonate, jasmonic acid and salicylic acid elicitors. Not Bot Horti Agrobot Cluj Napoca 48(2):839–848

    Article  CAS  Google Scholar 

  • Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A, Wang S (2022) Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. Plant J 113(3):546–561

    Article  PubMed  Google Scholar 

  • Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11(6):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, **e X, Li C, Wang H, Yu Y, Huang B (2023) Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Int J Phytoremediation. https://doi.org/10.1080/15226514.2023.2176466

    Article  PubMed  Google Scholar 

  • Zhou W, Shi M, Deng C, Lu S, Huang F, Wang Y, Kai G (2021) The methyl jasmonate-responsive transcription factor SmMYB1 promotes phenolic acid biosynthesis in Salvia miltiorrhiza. Hortic Res. https://doi.org/10.1038/s41438-020-00443-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhoulideh Y, Mohammadi Y, Mashayekhi M (2022) Investigation of the methyl jasmonate effect on the Taxol biosynthetic pathway through the expression of DBAT, BAPT, and TS genes. Sci for. https://doi.org/10.18671/scifor.v50.47

    Article  Google Scholar 

  • Zhu Z, Lee B (2015) Friends or foes: new insights in jasmonate and ethylene co-actions. Plant Physiol 56(3):414–420

    CAS  Google Scholar 

  • Zhu M, Li Y, Chen G, Ren L, **e Q, Zhao Z, Hu Z (2015) Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence and produces dark-green fruit. Sci Rep 5(1):7693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-IHBT, Palampur for providing the necessary facilities. The authors also acknowledge the Academy of Scientific and Innovative Research (AcSIR), Ghaziabad. Amit Kumar also acknowledges CSIR, New Delhi for providing Junior Research Fellowship. Amit Kumar also acknowledges the Academy of Scientific and Innovative Research (AcSIR), Ghaziabad for Ph.D. enrolment. CSIR-IHBT communication number is 5534.

Funding

This study is financially supported by the Council of Scientific and Industrial Research (CSIR), Government of India, under the project “Biotechnological interventions for sustainable bio-economy generation through characterization, conservation, prospection, and utilization of Himalayan bioresources (MLP-0201), Phytopharma mission project (HCP-0010), Advanced Diploma Program in Plant Tissue Culture” (GAP-0225) and “Understanding the molecular mechanism underlying cambial meristematic cells (CMCs) differentiation and their utilization for specialized metabolite production in Picrorhiza kurrooa” (GAP-0327). Amit Kumar is financially supported by the CSIR, New Delhi through Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AK and ARW, Search strategy, article outline, tables and figures: AK, Writing of the original draft: AK, MP, and ARW, Article editing: AK, MP, and ARW, Final review: ARW. Approved the final version of the manuscript: ARW.

Corresponding author

Correspondence to Ashish R. Warghat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article followed the ethical standards of the institute.

Additional information

Handling Author: Mohammad Irfan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Partap, M. & Warghat, A.R. Jasmonic Acid: A Versatile Phytohormone Regulating Growth, Physiology, and Biochemical Responses. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11376-x

Keywords

Navigation