Log in

Auxin Biosynthesis is Required for Root Thermomorphogenesis

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The role of auxin in plant root thermomorphogenesis is still under debate. Here, we showed that auxin is necessary for root elongation in either seedling roots or detached roots. Our study clarified the uncertainty in the field and shed new light on future research in plant response to high ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors is: Ziqiang Zhu (zqzhu@njnu.edu.cn).

Abbreviations

PIF4:

PHYTOCHROME INTERACTING FACTOR 4

GUS:

β-Glucuronidase

Kyn:

L-Kynurenine

PPBo:

4-Phenoxyphenylboronic acid

HY5:

ELONGATED HYPOCOTYL 5

SAUR40:

SMALL AUXIN UP-REGULATED RNA 40

References

  • Ambastha V, Leshem Y (2020) Cyclin B1;1 activity is observed in lateral roots but not in the primary root during lethal salinity and salt stress recovery. Plant Signal Behav 15(8):1776026

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delker C (2019) A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol 180:757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béziat C, Kleine-Vehn J, Feraru E (2017) Histochemical staining of β-Glucuronidase and its spatial quantification. Methods Mol Biol 1497:73–80

    Article  PubMed  Google Scholar 

  • Borniego MB, Costigliolo-Rojas C, Casal JJ (2022) Shoot thermosensors do not fulfil the same function in the root. New Phytol 236:9–14

    Article  PubMed  Google Scholar 

  • Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106

    Article  CAS  PubMed  Google Scholar 

  • Chen LQ, Tong JH, **ao LT, Ruan Y, Liu JC, Zeng MH, Huang H, Wang JW, Xu L (2016) YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. J Exp Bot 67:4273–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, Marriott P, Brierley I, Firth AE, Wigge PA (2020) An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat Plants 6:522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillochet C, Burko Y, Platre MP, Zhang L, Simura J, Willige BC, Kumar SV, Ljung K, Chory J, Busch W (2020) HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in Arabidopsis. Development 147:dev192625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A 95:7197–7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanzawa T, Shibasaki K, Numata T, Kawamura Y, Gaude T, Rahman A (2013) Cellular auxin homeostasis under high temperature is regulated through a sorting NEXIN1-dependent endosomal trafficking pathway. Plant Cell 25:3424–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, **e DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies l-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JC, Schafer E, Jaeger KE, Wigge PA (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F, Kim SB, Baek S, Zubieta C, Jaeger KE, Wigge PA (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–260

    Article  CAS  PubMed  Google Scholar 

  • Kakei Y, Yamazaki C, Suzuki M, Nakamura A, Sato A, Ishida Y, Kikuchi R, Higashi S, Kokudo Y, Ishii T, Soeno K, Shimada Y (2015) Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J 84:827–837

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Wang W, Huq E (2021) Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nat Commun 12:3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schafer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Xu Y, Zhu Z (2020) Emerging plant thermosensors: from RNA to protein. Trends Plant Sci 25:1187–1189

    Article  CAS  PubMed  Google Scholar 

  • Martins S, Montiel-Jorda A, Cayrel A, Huguet S, Roux CP, Ljung K, Vert G (2017) Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 8:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8(3):e1002594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lin Xu for DR5:GUS seeds, Dr. Teva Vernoux for DII-VENUS seeds and Dr. Dongqing Xu for hy5-215 seeds.

Funding

This study was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

W.L. and Y.C. contributed to data curation and investigation. Z.Z. contributed to conceptualization, investigation, supervision, funding acquisition, writing and project administration.

Corresponding author

Correspondence to Ziqiang Zhu.

Ethics declarations

Competing Interests

No competing interests declared.

Additional information

Handling Editor: James Campanella.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 131 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Cheng, Y. & Zhu, Z. Auxin Biosynthesis is Required for Root Thermomorphogenesis. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11305-y

Keywords

Navigation