Log in

Floating Treatment Wetlands (FTWs) is an Innovative Approach for the Remediation of Petroleum Hydrocarbons-Contaminated Water

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Globally, water resources contaminated with petroleum hydrocarbons are under much consideration due to their hazardous effects on human beings as well as on plants and animals in the ecosystem. Petroleum hydrocarbons are classified as recalcitrant pollutants in nature. These petroleum products are mostly released in the water resources during the petroleum refining process by oil refineries. The conventional clean-up technologies for hydrocarbons contaminated water have more destructive effects on the aquatic and land ecosystems. Consequently, to develop cost-effective and more environment-friendly techniques that clean up the environment and restore the marine ecosystem to its original forms. Kee** in view, this review article explores the detailed information on fabrication, cost-effectiveness, and an overview of innovation of the floating treatment wetlands (FTWs) using plants and bacterial combined functions to remediate the petroleum hydrocarbons contaminated water. The review also discusses the improvement of microbial efficacy for hydrocarbon degradation using FTWs. The review article shows the various applications of FTWs to remove different organic pollutants in petroleum hydrocarbons contaminated water. The review also describes the prospective benefits of FTWs for their multiple uses for removal of hydrocarbons, chemical oxygen demand (COD), biochemical oxygen demand (BOD), phenol, and solids from hydrocarbons contaminated water. This review widely discusses the role of hydrocarbons in degrading bacteria, and wetland plants and the mechanism involved during the remediation process of hydrocarbons in FTWs. It further demonstrates features disturbing the treatment efficiency of FTWs, and finally, it is concluded by successful applications of FTWs and various suggestions for potential future research prospects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data and material is available for research purpose and for reference.

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699

    Article  CAS  PubMed  Google Scholar 

  • Abdullah SRS, Al-Baldawi IA, Almansoory AF et al (2020) Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 247:125932

    Article  CAS  PubMed  Google Scholar 

  • Afzal M, Arslan M, Müller JA et al (2019a) Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nat Sustain 2:863–871. https://doi.org/10.1038/s41893-019-0350-y

    Article  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014a) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078

    Article  CAS  PubMed  Google Scholar 

  • Afzal M, Shabir G, Tahseen R, Ejazul I, Iqbal S, Khan QM, Khalid ZM (2014b) Endophytic Burkholderia sp. strain PsJN improves plant growth and phytoreme-diation of soil irrigated with textile effluent. Clean Soil Air Water 42:1304–1310

    Article  CAS  Google Scholar 

  • Afzal M, Rehman K, Shabir G et al (2019) Large-scale remediation of oil-contaminated water using floating treatment wetlands. npj Clean Water. https://doi.org/10.1038/s41545-018-0025-7

    Article  Google Scholar 

  • Afzal M, Rehman K, Shabir G et al (2019) Large-scale remediation of oil-contaminated water using fl oating treatment wetlands. Npj Clean Water 2:1–10. https://doi.org/10.1038/s41545-018-0025-7

    Article  CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremed 14:35–47

    Article  Google Scholar 

  • Ahsan MT, Najam-ul-Haq M, Idrees M et al (2017) Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead. Int J Phytoremed 19:937–946

    Article  CAS  Google Scholar 

  • Ahmed AF, Ahmad J, Basma Y, Ramzi T (2007) J Hazard Mater 141:557–564

    Article  Google Scholar 

  • Akratos CS, Tsihrintzis VA (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 29:173–191

    Article  Google Scholar 

  • Al-Majed AA, Adebayo AR, Hossain ME (2012) A sustainable approach to controlling oil spills. J Environ Manag 113:213–227

    Article  Google Scholar 

  • Ali S, Abbas Z, Rizwan M et al (2020) Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability. https://doi.org/10.3390/su12051927

    Article  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani AM, Rajendran P (2019) Petroleum hydrocarbon and living organisms. In: Ince M (ed) Hydrocarbon pollution and its effect on the environment. IntechOpen, London

    Google Scholar 

  • Arshad A (2017) Design of floating wetland for treatment of municipal wastewater and environmental assessment using emergy technique. Proc Int Acad Ecol Environ Sci 7:78

    CAS  Google Scholar 

  • Ashraf S, Afzal M, Naveed M et al (2018a) Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytoremed 20:121–128

    Article  CAS  Google Scholar 

  • Ashraf S, Naveed M, Zahir ZA et al (2018b) Plant-endophyte synergism in constructed wetlands enhances the remediation of tannery effluent. Water Sci Technol 77:1262–1270. https://doi.org/10.2166/wst.2018.004

    Article  CAS  PubMed  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi R, Zhou C, Jia Y et al (2019) Giving waterbodies the treatment they need: a critical review of the application of constructed floating wetlands. J Environ Manag 238:484–498

    Article  CAS  Google Scholar 

  • Białowiec A, Davies L, Albuquerque A, Randerson PF (2012) The influence of plants on nitrogen removal from landfill leachate in discontinuous batch shallow constructed wetland with recirculating subsurface horizontal flow. Ecol Eng 40:44–52

    Article  Google Scholar 

  • Billore SK, Sharma JK (2009) Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Sci Technol 60:2851–2859

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Warford CM, Zedler JB (2002) Potential for using native plant species in stormwater wetlands. Environ Manage 29:385–394

    Article  PubMed  Google Scholar 

  • Borne KE, Fassman EA, Tanner CC (2013) Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecol Eng 54:173–182. https://doi.org/10.1016/j.ecoleng.2013.01.031

    Article  Google Scholar 

  • Boyd CE (1970) Vascular aquatic plants for mineral nutrient removal from polluted waters. Econ Bot 24:95–103

    Article  Google Scholar 

  • Buhmann A, Papenbrock J (2013) Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot 92:122–133

    Article  Google Scholar 

  • Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431

    Article  CAS  Google Scholar 

  • Chen Z, Cuervo DP, Müller JA et al (2016a) Hydroponic root mats for wastewater treatment—a review. Environ Sci Pollut Res 23:15911–15928. https://doi.org/10.1007/s11356-016-6801-3

    Article  CAS  Google Scholar 

  • Chang N-B, Xuan Z, Marimon Z, Islam K, Wanielista MP (2013) Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecol Eng 54:66–76

    Article  Google Scholar 

  • Clayton R, Jameson GJ, Manlapig EV (1991) The development and application of the Jameson cell. Miner Eng 4:925–933

    Article  Google Scholar 

  • Colares GS, Dell’Osbel N, Wiesel PG et al (2020) Floating treatment wetlands: a review and bibliometric analysis. Sci Total Environ 714:136776. https://doi.org/10.1016/j.scitotenv.2020.136776

    Article  CAS  PubMed  Google Scholar 

  • Costa AS, Romão LPC, Araújo BR et al (2012) Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresour Technol 105:31–39

    Article  CAS  PubMed  Google Scholar 

  • Cuellar-Bermudez SP, Aleman-Nava GS, Chandra R et al (2017) Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res 24:438–449

    Article  Google Scholar 

  • Cui L, Ouyang Y, Lou Q et al (2010) Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol Eng 36:1083–1088

    Article  Google Scholar 

  • Darajeh N, Idris A, Masoumi HRF et al (2016) Modeling BOD and COD removal from palm oil mill secondary effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. J Environ Manag 181:343–352

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13

    Google Scholar 

  • De Stefani G, Tocchetto D, Salvato M, Borin M (2011) Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia 674:157–167. https://doi.org/10.1007/s10750-011-0730-4

    Article  CAS  Google Scholar 

  • Deegan BM, White SD, Ganf GG (2007) The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquat Bot 86:309–315

    Article  Google Scholar 

  • Dunkle MN, Pijcke P, Winniford B, Bellos G (2019) Quantification of the composition of liquid hydrocarbon streams: comparing the GC-VUV to DHA and GCxGC. J Chromatogr A 1587:239–246

    Article  CAS  PubMed  Google Scholar 

  • Dunqiu W, Shaoyuan B, Mingyu W et al (2012) Effect of artificial aeration, temperature, and structure on nutrient removal in constructed floating islands. Water Environ Res 84:405–410

    Article  PubMed  Google Scholar 

  • Fahid M, Ali S, Shabir G et al (2020) Cyperus laevigatus L. enhances diesel oil remediation in synergism with bacterial inoculation in floating treatment wetlands. Sustainability. https://doi.org/10.3390/su12062353

    Article  Google Scholar 

  • Fahid M, Arslan M, Shabir G et al (2020b) Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. ECSN. https://doi.org/10.1016/j.chemosphere.2019.124890

    Article  Google Scholar 

  • Fan E, Guo Y, Zhai AC et al (2018) KangLife cycle energy analysis of reclaimed water reuse projects in Bei**g. Water Environ Res 90:13–20. https://doi.org/10.2175/106143017x14902968254548

  • Faulwetter JL, Burr MD, Cunningham AB et al (2011) Floating treatment wetlands for domestic wastewater treatment. Water Sci Technol 64:2089–2095

    Article  CAS  PubMed  Google Scholar 

  • Fuentes S, Méndez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98:4781–4794

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Zhou W, Huang J et al (2017) Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent. Bioresour Technol 234:243–252

    Article  CAS  PubMed  Google Scholar 

  • Ge Z, Feng C, Wang X, Zhang J (2016) Seasonal applicability of three vegetation constructed floating treatment wetlands for nutrient removal and harvesting strategy in urban stormwater retention ponds. Int Biodeterior Biodegrad 112:80–87

    Article  CAS  Google Scholar 

  • Geetha SJ, Joshi SJ, Kathrotiya S (2013) Isolation and characterization of hydrocarbon degrading bacterial isolate from oil contaminated sites. APCBEE Proc 5:237–241

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Grandclément C, Seyssiecq I, Piram A et al (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317

    Article  PubMed  Google Scholar 

  • Hanafy M, Nabih HI (2007) Treatment of oily wastewater using dissolved air flotation technique. Energy Sources Part A 29:143–159

    Article  CAS  Google Scholar 

  • Headley, R.T, Tanner C. (2006) Application of floating wetlands for enhanced stormwater treatment: a review. Client technical report prepared for Auckland Council. 100

  • Headley T, Tanner C (2012) Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology. Crit Rev Environ Sci Technol 42:2261–2310

    Article  CAS  Google Scholar 

  • Headley TR, Tanner CC (2008) Floating Treatment Wetlands : an Innovative Option for Stormwater Quality Applications. 11th Int Conf Wetl Syst Water Pollut Control Indore. India 17:1101–1106

    Google Scholar 

  • Hogg EH, Wein RW (1988) The contribution of Typha components to floating mat buoyancy. Ecology 69:1025–1031

    Article  Google Scholar 

  • Huang X, Zhao F, Yu G et al (2017) Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary using the Phragmites australis artificial floating wetlands. Biomed Res Int. https://doi.org/10.1155/2017/6201048

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubbard RK (2010) Floating vegetated mats for improving surface water quality. In: Shah V (ed) Emerging environmental technologies, vol II. Springer, Dordrecht, pp 211–244

    Google Scholar 

  • Hwang L, LePage BA (2011) Floating islands—an alternative to urban wetlands. In: LePage BA (ed) Wetlands. Springer, Dordrecht, pp 237–250

    Chapter  Google Scholar 

  • Ijaz A, Imran A, ul Haq MA et al (2016a) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405:179–195

    Article  CAS  Google Scholar 

  • Ijaz A, Iqbal Z, Afzal M (2016b) Remediation of sewage and industrial effluent using bacterially assisted floating treatment wetlands vegetated with Typha domingensis. Water Sci Technol 74:2192–2201. https://doi.org/10.2166/wst.2016.405

    Article  CAS  PubMed  Google Scholar 

  • Ijaz A, Shabir G, Khan QM, Afzal M (2015) Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng 84:58–66. https://doi.org/10.1016/j.ecoleng.2015.07.025

    Article  Google Scholar 

  • Imron MF, Kurniawan SB, Ismail N, Abdullah SRS (2020) Future challenges in diesel biodegradation by bacteria isolates: a review. J Clean Prod 251:119716

    Article  CAS  Google Scholar 

  • Jabeen H, Iqbal S, Ahmad F et al (2016) Enhanced remediation of chlorpyrifos by ryegrass (Lolium multiflorum) and a chlorpyrifos degrading bacterial endophyte Mezorhizobium sp. HN3. Int J Phytoremed 18:126–133

    Article  CAS  Google Scholar 

  • Javed MT, Saleem MH, Aslam S, Rehman M, Iqbal N, Begum R, Ali S, Alsahli AA, Alyemeni MN, Wijaya L (2020) Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cadmium stressed Ajwain (Trachyspermum ammi L.). Plant Physiol Biochem 157:23–37

    Article  CAS  PubMed  Google Scholar 

  • Ji M, Hu Z, Hou C et al (2020) New insights for enhancing the performance of constructed wetlands at low temperatures. Bioresour Technol 301:122722

    Article  CAS  PubMed  Google Scholar 

  • **g L, El-Houjeiri HM, Monfort J-C et al (2020) Carbon intensity of global crude oil refining and mitigation potential. Nat Clim Chang 10:526–532. https://doi.org/10.1038/s41558-020-0775-3

    Article  CAS  Google Scholar 

  • Kadlec RH, Wallace SD (2008) Treatment wetlands. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kamath R, Rentz JA, Schnoor JL, Alvarez PJJ (2004) Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Studies in surface science and catalysis. Elsevier, Amsterdam, pp 447–478

    Google Scholar 

  • Keizer-vlek HE, Verdonschot PFM, Verdonschot RCM, Dekkers D (2014) The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecol Eng 73:684–690. https://doi.org/10.1016/j.ecoleng.2014.09.081

    Article  Google Scholar 

  • Keller AA, Cavallaro L (2008) Assessing the US Clean Water Act 303 (d) listing process for determining impairment of a waterbody. J Environ Manag 86:699–711

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013a) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  PubMed  Google Scholar 

  • Khan AHA, Tanveer S, Alia S et al (2017) Modeling BOD and COD removal from palm oil mill secondary effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. Ecol Eng 104:158–164

    Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332. https://doi.org/10.1016/j.chemosphere.2012.09.045

    Article  CAS  PubMed  Google Scholar 

  • Kharaka YK, Hanor JS (2003) Deep fluids in the continents: I. Sedimentary Basins Trgeo 5:605

    Google Scholar 

  • Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in develo** countries: a review. Ecol Eng 16:545–560

    Article  Google Scholar 

  • Krishnan S, Rawindran H, Sinnathambi CM, Lim JW (2017) Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. In: IOP conference series: materials science and engineering. IOP Publishing, p 12089

  • Kulkarni SJ, Goswami AK (2013) Adsorption studies for organic matter removal from wastewater by using bagasse flyash in batch and column operations. Int J Sci Res 2:180–183

    Google Scholar 

  • Kundu P, Mishra IM (2018) Treatment and reclamation of hydrocarbon-bearing oily wastewater as a hazardous pollutant by different processes and technologies: a state-of-the-art review. Rev Chem Eng 35:73–108

    Article  Google Scholar 

  • Kuppusamy S, Maddela NR, Megharaj M, Venkateswarlu K (2020) Impact of total petroleum hydrocarbons on human health. Total petroleum hydrocarbons. Springer, Cham, pp 139–165

    Chapter  Google Scholar 

  • Kuyukina MS, Krivoruchko AV, Ivshina IB (2020) Advanced bioreactor treatments of hydrocarbon-containing wastewater. Appl Sci 10:1–19

    Article  Google Scholar 

  • Ladislas S, Gérente C, Chazarenc F et al (2015) Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol Eng 80:85–91. https://doi.org/10.1016/j.ecoleng.2014.09.115

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Mol Biol Rev 54:305–315

    CAS  Google Scholar 

  • Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109:14–45. https://doi.org/10.1016/j.marpolbul.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  • Luederitz V, Eckert E, Lange-Weber M et al (2001) Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecol Eng 18:157–171

    Article  Google Scholar 

  • Luhach J, Chaudhry S (2012) Effect of diesel fuel contamination on seed germination and growth of four agricultural crops. Univers J Environ Res Technol 2(4):

  • Ma F, Guo JB, Zhao LJ et al (2009) Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresource Technol 100:597–602

    Article  CAS  Google Scholar 

  • Mallison CT, Stocker RK, Cichra CE (2001) Physical and vegetative characteristics of floating islands. J Aquat Plant Manag 39:107–111

    Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H et al (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118

    CAS  PubMed  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut 138:86–91

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi L, Rahdar A, Bazrafshan E et al (2020) Petroleum hydrocarbon removal from wastewaters: a review. Processes 8:447

    Article  CAS  Google Scholar 

  • Mumaw CL, Surace M, Levesque S et al (2017) Atypical microglial response to biodiesel exhaust in healthy and hypertensive rats. Neurotoxicology 59:155–163

    Article  CAS  PubMed  Google Scholar 

  • Nawaz N, Ali S, Shabir G et al (2020) Bacterial augmented floating treatment wetlands for efficient treatment of synthetic textile dye wastewater. Sustain 12:1–17. https://doi.org/10.3390/su12093731

    Article  CAS  Google Scholar 

  • Nelson CE, Jerram DA, Hobbs RW (2009) Flood basalt facies from borehole data: implications for prospectivity and volcanology in volcanic rifted margins. Pet Geosci 15:313–324

    Article  Google Scholar 

  • Nesterenko-Malkovskaya A, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria. Chemosphere 87:1186–1191

    Article  CAS  PubMed  Google Scholar 

  • Nouri J, Jassbi J, Jafarzadeh N et al (2009) Comparative study of environmental impact assessment methods along with a new dynamic system-based method. Afr J Biotechnol 8:3267–3275

    Google Scholar 

  • Obida CB, Alan Blackburn G, Duncan Whyatt J, Semple KT (2018) Quantifying the exposure of humans and the environment to oil pollution in the Niger delta using advanced geostatistical techniques. Environ Int 111:32–42. https://doi.org/10.1016/j.envint.2017.11.009

    Article  PubMed  Google Scholar 

  • O’Brien PL, DeSutter TM, Casey FXM et al (2017) Evaluation of soil function following remediation of petroleum hydrocarbons—a review of current remediation techniques. Curr Pollut Rep 3:192–205

    Article  Google Scholar 

  • Orsi F, Muratori M, Rocco M et al (2016) A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost. Appl Energy 169:197–209

    Article  Google Scholar 

  • Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526. https://doi.org/10.1016/j.eti.2019.100526

    Article  Google Scholar 

  • Ostendorp W (1997) Auswirkungen von Wintermahd auf den Nährstoffhaushalt von Seeuferröhrichten des Bodensee-Untersees. Verh Der Ges Für Ökol 27:227–234

    CAS  Google Scholar 

  • Ouellet-Plamondon C, Chazarenc F, Comeau Y, Brisson J (2006) Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecol Eng 27:258–264

    Article  Google Scholar 

  • Pan B, Yuan J, Zhang X et al (2016) A review of ecological restoration techniques in fluvial rivers. Int J Sediment Res 31:110–119

    Article  Google Scholar 

  • Pandey A, Lee DJ, Chang J-S et al (2018) Biomass, biofuels, biochemicals: biofuels from algae. Elsevier, Amsterdam

    Google Scholar 

  • Parveen A, Saleem MH, Kamran M, Haider MZ, Chen J-T, Malik Z, Rana MS, Hassan A, Hur G, Javed MT (2020) Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and phytoremediation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules 10:592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlineri N, Skoulikidis NT, Tsihrintzis VA (2017) Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem Eng J 308:1120–1132

    Article  CAS  Google Scholar 

  • Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamics of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution in Patagonian soil. Int Biodeterior Biodegrad 52:21–30

    Article  CAS  Google Scholar 

  • Phenrat T, Teeratitayangkul P, Prasertsung I et al (2017) Vetiver plantlets in aerated system degrade phenol in illegally dumped industrial wastewater by phytochemical and rhizomicrobial degradation. Environ Sci Pollut Res 24:13235–13246

    Article  CAS  Google Scholar 

  • Polonsky MJ, Winston W, Mintu-Wimsatt AT (1995) Environmental marketing: strategies, practice, theory, and research. Psychology Press, London

    Google Scholar 

  • Poulopoulos P, Baskoutas S, Karoutsos V et al (2005) Growth and optical absorption of thin ZnSe films. J Phys 10:259–262

    CAS  Google Scholar 

  • Prince RC, McFarlin KM, Butler JD et al (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90:521–526

    Article  CAS  PubMed  Google Scholar 

  • Refaat AA, Attia NK, Sibak HA et al (2008) Production optimization and quality assessment of biodiesel from waste vegetable oil. Int J Environ Sci Technol 5:75–82

    Article  CAS  Google Scholar 

  • Rehman K, Ijaz A, Arslan M, Afzal M (2019) Floating treatment wetlands as biological buoyant filters for wastewater reclamation. Int J Phytoremediation 21:1273–1289

    Article  CAS  PubMed  Google Scholar 

  • Rehman K, Imran A, Amin I, Afzal M (2018a) Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere 576–583:576–583. https://doi.org/10.1016/j.chemosphere.2018.11.041

    Article  CAS  Google Scholar 

  • Rehman K, Imran A, Amin I, Afzal M (2018b) Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater 349:242–251. https://doi.org/10.1016/j.jhazmat.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  • Rehman M, Yang M, Fahad S, Saleem MH, Liu L, Liu F, Deng G (2020) Morpho-physiological traits, antioxidant capacity, and nitrogen metabolism in ramie under nitrogen fertilizer. Agron J 112:2988–2997

    Article  CAS  Google Scholar 

  • Rehman M, Saleem MH, Fahad S, Bashir S, Peng D, Deng G, Alamri S, Siddiqui MH, Khan SM, Shah RA (2021) Effects of rice straw biochar and nitrogen fertilizer on ramie (Boehmeria nivea L.) morpho-physiological traits, copper uptake and post-harvest soil characteristics, grown in an aged-copper contaminated soil. J Plant Nutr. https://doi.org/10.1080/01904167.2021.1943675

    Article  Google Scholar 

  • Renou S, Givaudan JG, Poulain S et al (2008) Landfill leachate treatment: Review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CJ (2013) Applications of bioremediation and phytoremediation. Sci Prog 96(4):417–427

    Article  CAS  PubMed  Google Scholar 

  • Sajna KV, Sukumaran RK, Gottumukkala LD, Pandey A (2015) Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour Technol 191:133–139

    Article  CAS  PubMed  Google Scholar 

  • Saleem H, Arslan M, Rehman K et al (2018) Phragmites australis—a helophytic grass—can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi J Biol Sci 26:1179–1186. https://doi.org/10.1016/j.sjbs.2018a.01.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem H, Rehman K, Arslan M, Afzal M (2018b) Enhanced degradation of phenol in floating treatment wetlands by plant-bacterial synergism. Int J Phytoremediation 20:692–698. https://doi.org/10.1080/15226514.2017.1413334

    Article  CAS  PubMed  Google Scholar 

  • Saleem MH, Ali S, Hussain S, Kamran M, Chattha MS, Ahmad S, Aqeel M, Rizwan M, Aljarba NH, Alkahtani S (2020) Flax (Linum usitatissimum L.): a potential candidate for phytoremediation? Biological and economical points of view. Plants 9:496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem MH, Ali S, Rehman M, Hasanuzzaman M, Rizwan M, Irshad S, Shafiq F, Iqbal M, Alharbi BM, Alnusaire TS (2020b) Jute: a potential candidate for phytoremediation of metals—a review. Plants 9:258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem MH, Ali S, Rehman M, Rana MS, Rizwan M, Kamran M, Imran M, Riaz M, Soliman MH, Elkelish A (2020) Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 248:126032

    Article  CAS  PubMed  Google Scholar 

  • Saleem MH, Fahad S, Adnan M, Ali M, Rana MS, Kamran M, Ali Q, Hashem IA, Bhantana P, Ali M, Hussain RM (2020) Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environ Sci Pollut Res 27:37121–37133

    Article  CAS  Google Scholar 

  • Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AEL, Hossain A, Llanes A, Liu L (2020e) Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ Sci Pollut Res 27:5211–5221

    Article  CAS  Google Scholar 

  • Saleem MH, Fahad S, Rehman M, Saud S, Jamal Y, Khan S, Liu L (2020) Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. PeerJ 8:e8321

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem MH, Kamran M, Zhou Y, Parveen A, Rehman M, Ahmar S, Malik Z, Mustafa A, Anjum RMA, Wang B (2020) Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J Environ Manag 257:109994

    Article  CAS  Google Scholar 

  • Saleem MH, Wang X, Ali S, Zafar S, Nawaz M, Adnan M, Fahad S, Shah A, Alyemeni MN, Hefft DI, Ali S (2021) Interactive effects of gibberellic acid and NPK on morpho-physio-biochemical traits and organic acid exudation pattern in coriander (Coriandrum sativum L.) grown in soil artificially spiked with boron. Plant Physiol Biochem 167:884–900

    Article  CAS  PubMed  Google Scholar 

  • Serra DS, Evangelista JSAM, Zin WA et al (2017) Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol. Respir Physiol Neurobiol 242:80–85

    Article  CAS  PubMed  Google Scholar 

  • Shahid MJ, AL-surhanee AA, Kouadri F et al (2020) Role of microorganisms in the remediation of wastewater in floating treatment wetlands: a review. Sustain. https://doi.org/10.3390/su12145559

    Article  Google Scholar 

  • Shahid MJ, Arslan M, Ali S et al (2018) Floating wetlands: a sustainable tool for wastewater treatment. Clean Soil Air Water. https://doi.org/10.1002/clen.201800120

    Article  Google Scholar 

  • Shahid MJ, Arslan M, Siddique M et al (2019) Potentialities of floating wetlands for the treatment of polluted water of river Ravi, Pakistan. Ecol Eng 133:167–176

    Article  Google Scholar 

  • Sharma R, Vymazal J, Malaviya P (2021) Application of floating treatment wetlands for stormwater runoff: a critical review of the recent developments with emphasis on heavy metals and nutrient removal. Sci Total Environ 777:146044

    Article  CAS  PubMed  Google Scholar 

  • Shim H, Chauhan S, Ryoo D et al (2000) Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl Environ Microbiol 66:4673–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22:27–42. https://doi.org/10.1016/j.ecoleng.2004.01.004

    Article  Google Scholar 

  • Souza EC, Vessoni-Penna TC, de Souza Oliveira RP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeterior Biodegrad 89:88–94

    Article  CAS  Google Scholar 

  • Stewart FM, Mulholland T, Cunningham AB et al (2008) Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes—results of laboratory-scale tests. Land Contam Reclam 16:25–33. https://doi.org/10.2462/09670513.874

    Article  Google Scholar 

  • Strong PJ, Burgess JE (2008) Treatment methods for wine-related and distillery wastewaters: a review. Bioremediat J 12:70–87

    Article  CAS  Google Scholar 

  • Sugiura K, Ishihara M, Shimauchi T, Harayama S (1996) Physicochemical properties and biodegradability of crude oil. Environ Sci Technol 31:45–51

    Article  Google Scholar 

  • Sun L, Liu Y, ** H (2009) Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecol Eng 35:135–140

    Article  Google Scholar 

  • Sun Y, Zhang Y, Quan X (2008) Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Sep Purif Technol 62:565–570

    Article  CAS  Google Scholar 

  • Syranidou E, Christofilopoulos S, Gkavrou G et al (2016) Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front Microbiol 7:1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang J, Wang M, Wang F et al (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851

    Article  CAS  Google Scholar 

  • Tanner CC, Headley TR (2011) Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng 37:474–486. https://doi.org/10.1016/j.ecoleng.2010.12.012

    Article  Google Scholar 

  • Tara N, Iqbal M, Khan QM, Afzal M (2019) Bioaugmentation of floating treatment wetlands for the remediation of textile effluent. Water Environ J 33:124–134. https://doi.org/10.1111/wej.12383

    Article  CAS  Google Scholar 

  • Thijs S, Op De Beeck M, Beckers B et al (2017) Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front Microbiol 8:494

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomassen HBM, Smolders AJP, Van Herk JM et al (2003) Restoration of cut-over bogs by floating raft formation: an experimental feasibility study. Appl Veg Sci 6:141–152

    Article  Google Scholar 

  • Van de Moortel A (2008) Use of floating macrophyte mats for treatment of CSOs. In: 11th International conference on urban drainage

  • Van de Moortel AMK, Meers E, De Pauw N, Tack FMG (2010) Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water Air Soil Pollut 212:281–297. https://doi.org/10.1007/s11270-010-0342-z

    Article  CAS  Google Scholar 

  • Varjani SJ (2014) Hydrocarbon degrading and biosurfactants (bioemulsifiers) producing bacteria from petroleum oil wells.

  • Varjani SJ, Rana DP, Jain AK et al (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad 103:116–124

    Article  CAS  Google Scholar 

  • Varjani SJ, Srivastava VK (2015) Green technology and sustainable development of environment. Renew Resour J 3:244–249

    Google Scholar 

  • Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201

    Article  CAS  PubMed  Google Scholar 

  • Varjani Sunita J, Rana Dolly P, Bateja S, Upasani Vivek N (2013) Isolation and screening for hydrocarbon utilizing bacteria (HUB) from petroleum samples. Int J Curr Microbiol App Sci 2:48–60

    Google Scholar 

  • Vymazal J (2013) Emergent plants used in free water surface constructed wetlands: a review. Ecol Eng 61:582–592

    Article  Google Scholar 

  • Vymazal J (2016) Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ 544:495–498

    Article  CAS  PubMed  Google Scholar 

  • Vymazal J, Kröpfelová L (2011) A three-stage experimental constructed wetland for treatment of domestic sewage: first 2 years of operation. Ecol Eng 37:90–98

    Article  Google Scholar 

  • Walker CH, Sibly RM, Hopkin SP, Peakall DB (2012) Principles of ecotoxicology. CRC Press, Boca Raton

    Google Scholar 

  • Wand H, Vacca G, Kuschk P et al (2007) Removal of bacteria by filtration in planted and non-planted sand columns. Water Res 41:159–167. https://doi.org/10.1016/j.watres.2006.08.024

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Sample DJ (2014) Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds. J Environ Manag 137:23–35. https://doi.org/10.1016/j.jenvman.2014.02.008

    Article  CAS  Google Scholar 

  • Wang X, Zhu H, Yan B et al (2020) Bioaugmented constructed wetlands for denitrification of saline wastewater: a boost for both microorganisms and plants. Environ Int 138:105628. https://doi.org/10.1016/j.envint.2020.105628

    Article  CAS  PubMed  Google Scholar 

  • Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K et al (2016) Long-term exposure to air pollution is associated with biological aging. Oncotarget 7:74510

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward N, Clark J, Lowe P, Seymour S (1993) Water pollution from agricultural pesticides. Centre for rural economy research report. Centre of Rural Economy, Newcastle upon Tyne

    Google Scholar 

  • Weragoda SK, **adasa K, Zhang DQ et al (2012) Tropical application of floating treatment wetlands. Wetlands 32:955–961

    Article  Google Scholar 

  • Weyens N, Van Der Lelie D, Artois T et al (2009a) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S et al (2009b) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • White RD (2009) Environmental crime: a reader. Willan Cullompton, Devon, UK

    Google Scholar 

  • White SA, Cousins MM (2013) Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated storm water runoff. Ecol Eng 61:207–215

    Article  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

  • Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151

    CAS  PubMed  Google Scholar 

  • Williams HG, Białowiec A, Slater F, Randerson PF (2010) Diurnal cycling of dissolved gas concentrations in a willow vegetation filter treating landfill leachate. Ecol Eng 36:1680–1685

    Article  Google Scholar 

  • Wu H, Zhang J, Ngo HH et al (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601

    Article  CAS  PubMed  Google Scholar 

  • Yousaf S, Afzal M, Anees M et al (2014) Ecology and functional potential of endophytes in bioremediation: a molecular perspective. In: Verma VC (ed) Advances in endophytic research. Springer, New Delhi, pp 301–320

    Chapter  Google Scholar 

  • Yousaf S, Afzal M, Reichenauer TG et al (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683

    Article  CAS  PubMed  Google Scholar 

  • Zanaroli G, Di Toro S, Todaro D et al (2010) Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb Cell Fact 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao F, ** S, Yang X et al (2012) Purifying eutrophic river waters with integrated floating island systems. Ecol Eng 40:53–60. https://doi.org/10.1016/j.ecoleng.2011.12.012

    Article  CAS  Google Scholar 

  • Zhang C-B, Liu W-L, Pan X-C, Guan M, Liu S-Y, Ge Y, Chang J (2014) Com-parison of effects of plant and biofilm bacterial community parameters on removal performances of pollutants in floating island systems. Ecol Eng 73:58–63

    Article  Google Scholar 

  • Zhu L, Li Z, Ketola T (2011) Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecol Eng 37:1460–1466. https://doi.org/10.1016/j.ecoleng.2011.03.010

    Article  Google Scholar 

Download references

Acknowledgements

The publication of the present work is supported by the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2018JQ5218) and the National Natural Science Foundation of China (51809224), Top Young Talents of Shaanxi Special Support Program. The authors would like to express their deepest gratitude to University of Tabuk, for the technical and financial support for this study.

Author information

Authors and Affiliations

Authors

Contributions

XW, SF and SA conceived and designed the study and MF, SF, MHS, AA, and GS critically revised the manuscript and approved the final version. MFBM write the draft while RZ and MA compiled data.

Corresponding authors

Correspondence to **ukang Wang, Shafaqat Ali, Muhammad Afzal or Shah Fahad.

Ethics declarations

Competing interest

There is no competing interest in the publication of this manuscript.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Written consent was sought from each author to publish the manuscript.

Additional information

Handling Editor: Setsuko Komatsu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mfarrej, M.F.B., Wang, X., Fahid, M. et al. Floating Treatment Wetlands (FTWs) is an Innovative Approach for the Remediation of Petroleum Hydrocarbons-Contaminated Water. J Plant Growth Regul 42, 1402–1420 (2023). https://doi.org/10.1007/s00344-022-10674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10674-6

Keywords

Navigation