Log in

Mass transport of a mesoscale eddy in the South China Sea identified by a simulated passive tracer

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

To quantitatively investigate the water mass transport of mesoscale eddies, the mass transport induced by a simulated anticyclonic eddy in the South China Sea was evaluated by using the Regional Ocean Modelling System (ROMS) and a built-in passive tracer module. The results indicate that the eddy can trap and transport 51% of the initial water in the eddy core to 689 km from its origin during its lifetime of 100 days, with a stable loss rate of 6‰ per day. During propagation- there is drastic horizontal water exchange between the inside and outside of the eddy. Meanwhile- the vertical mass transport is significant- and 65% of the water initially in the mixed layer of the eddy is eventually detrained into the subsurface. A tracer budget analysis of eddy shows that advection is the dominant dynamic process of transport- while the effect of mixing is weak- and horizontal process plays a controlling role. Horizontal and vertical advection exhibit opposite patterns and strongly offset each other. Particularly- a distinct dipole pattern is found in the local velocity field of the eddy- with significant convergence (downwelling) and divergence (upwelling) zones in the anterior and posterior of the eddy- respectively- which is likely related to the driving mechanism of the westward propagation of the eddy. The dipole further induces a vertical overturning cell- through which the surface water in the anterior of the eddy detrains into the subsurface by downwelling and resurface from the posterior of the eddy by upwelling and gradually spreads out of the eddy. The temporal variability in the tracer budget is significant- in which horizontal advection is dominant. The propagation acceleration and temporal derivative of the deformation rate are highly correlated with tracer transport- suggesting the potential effect of the temporal instability of eddies on the eddy mass transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Bachman S D, Taylor J R. 2016. Numerical simulations of the equilibrium between eddy-induced restratification and vertical mixing. Journal of Physical Oceanography, 46(3): 919–935.

    Article  Google Scholar 

  • Barth A, Alvera-Azcarate A, Weisberg R H. 2008. A nested model study of the Loop Current generated variability and its impact on the West Florida Shelf. Journal of Geophysical Research: Oceans, 113(C5): C05009.

    Article  Google Scholar 

  • Chelton D B, Gaube P, Schlax M G, Early J J, Samelson R M. 2011. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332, https://doi.org/10.1126/science.1208897.

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M, de Szoeke R A. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606, https://doi.org/10.1029/2007GL030812.

    Article  Google Scholar 

  • Cotroneo Y, Aulicino G, Ruiz S, Pascual A, Budillon G, Fusco G, Tintoré J. 2016. Glider and satellite high resolution monitoring of a mesoscale eddy in the algerian basin: effects on the mixed layer depth and biochemistry. Journal of Marine Systems, 162: 73–88.

    Article  Google Scholar 

  • Dai J, Wang H Z, Zhang W M, An Y Z, Zhang R. 2020. Observed spatiotemporal variation of three-dimensional structure and heat/salt transport of anticyclonic mesoscale eddy in Northwest Pacific. Journal of Oceanology and Limnology, 38(6): 1654–1675, https://doi.org/10.1007/s00343-019-9148-z.

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer A S, Lazar A, Iudicone D. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003, https://doi.org/10.1029/2004JC002378.

    Article  Google Scholar 

  • Dong C M, Mcwilliams J C, Liu Y, Chen D K. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 3294.

    Article  Google Scholar 

  • Dong C M, Nencioli F, Liu Y, McWilliams J C. 2011. An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geoscience and Remote Sensing Letters, 8(6): 1055–1059.

    Article  Google Scholar 

  • Early J J, Samelson R M, Chelton D B. 2011. The evolution and propagation of quasigeostrophic ocean eddies. Journal of Physical Oceanography, 41(8): 1535–1555, https://doi.org/10.1175/2011JPO4601.1.

    Article  Google Scholar 

  • Falkowski P G, Ziemann D, Kolber Z, Bienfang P K. 1991. Role of eddy pum** in enhancing primary production in the ocean. Nature, 352(6330): 55–58.

    Article  Google Scholar 

  • Fukumori I, Lee T, Cheng B, Menemenlis D. 2004. The origin, pathway, and destination of Niño-3 water estimated by a simulated passive tracer and its adjoint. Journal of Physical Oceanography, 34(3): 582–604.

    Article  Google Scholar 

  • Gao S, Qu T D, Fukumori I. 2011. Effects of mixing on the subduction of South Pacific waters identified by a simulated passive tracer and its adjoint. Dynamics of Atmospheres and Oceans, 51(1–2): 45–54.

    Article  Google Scholar 

  • Gao S, Qu T D, Hu D X. 2012. Origin and pathway of the Luzon undercurrent identified by a simulated adjoint tracer. Journal of Geophysical Research: Oceans, 117(C5): C05011.

    Article  Google Scholar 

  • Hu J Y, Gan J P, Sun Z Y, Zhu J, Dai M H. 2011. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05016.

    Article  Google Scholar 

  • Hwang C, Chen S A. 2000. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. Journal of Geophysical Research: Oceans, 105(C10): 23943–23965.

    Article  Google Scholar 

  • Hwang C, Wu C R, Kao R. 2004. TOPEX/Poseidon observations of mesoscale eddies over the Subtropical Countercurrent: kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. Journal of Geophysical Research: Oceans, 109(C8): C08013, https://doi.org/10.1029/2003JC002026.

    Article  Google Scholar 

  • Jayne S R, Marotzke J. 2002. The oceanic eddy heat transport. Journal of Physical Oceanography, 32(12): 3328–3345.

    Article  Google Scholar 

  • Johnson W K, Miller L A, Sutherland N E, Wong C S. 2005. Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep Sea Research Part II: Topical Studies in Oceanography, 52(7–8): 933–953.

    Article  Google Scholar 

  • Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403.

    Article  Google Scholar 

  • Lee M M, Marshall D P, Williams R G. 1997. On the eddy transfer of tracers: advective or diffusive? Journal of Marine Research, 55(3): 483–505.

    Article  Google Scholar 

  • Lee M M, Nurser A J G, Coward A C, de Cuevas B A. 2007. Eddy advective and diffusive transports of heat and salt in the Southern Ocean. Journal of Physical Oceanography, 37(5): 1376–1393.

    Article  Google Scholar 

  • Lin X Y, Dong C M, Chen D K, Liu Y, Yang J S, Zou B, Guan Y P. 2015. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Research Part I: Oceanographic Research Papers, 99: 46–64.

    Article  Google Scholar 

  • Liu Y, Dong C M, Guan Y P, Chen D K, McWilliams J C, Nencioli F. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 68: 54–67.

    Article  Google Scholar 

  • Marshall J, Shuckburgh E, Jones H, Hill C. 2006. Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. Journal of Physical Oceanography, 36(9): 1806–1821.

    Article  Google Scholar 

  • Martin A P, Richards K J. 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep Sea Research Part II: Topical Studies in Oceanography, 48(4–5): 757–773, https://doi.org/10.1016/S0967-0645(00)00096-5.

    Article  Google Scholar 

  • McGillicuddy D J Jr, Robinson A R, Siegel D A, Jannasch H W, Johnson R, Dickey T D, McNeil J, Michaels A F, Knap A H. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394(6690): 263–266.

    Article  Google Scholar 

  • Moore A M, Arango H G, Di Lorenzo E, Cornuelle B D, Miller A J, Neilson D J. 2004. A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modelling, 7(1–2): 227–258, https://doi.org/10.1016/J.OCEMOD.2003.11.001.

    Article  Google Scholar 

  • Moore A M, Arango H G, Lorenzo E D, Miller A J, Cornuelle B D. 2009. An adjoint sensitivity analysis of the southern California current circulation and ecosystem. Journal of Physical Oceanography, 39(3): 702–720.

    Article  Google Scholar 

  • Nan F, He Z G, Zhou H, Wang D X. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05002, https://doi.org/10.1029/2010JC006790.

    Article  Google Scholar 

  • Nardelli B B. 2013. Vortex waves and vertical motion in a mesoscale cyclonic eddy. Journal of Geophysical Research Oceans, 118: 5609–5624, https://doi.org/10.1002/jgrc.20345.

    Article  Google Scholar 

  • Nemcek N, Ianson D, Tortell P D. 2008. A high-resolution survey of DMS, CO2, and O2/Ar distributions in productive coastal waters. Global Biogeochemical Cycles, 22(2): GB2009.

    Article  Google Scholar 

  • Nencioli F, Dong C M, Dickey T, Washburn L, McWilliams J C. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579, https://doi.org/10.1175/2009JTECHO725.1.

    Article  Google Scholar 

  • Oliver E C J, Holbrook N J. 2014. Extending our understanding of South Pacific gyre “spin-up”: modeling the East Australian Current in a future climate. Journal of Geophysical Research: Oceans, 119(5): 2788–2805, https://doi.org/10.1002/2013JC009591.

    Article  Google Scholar 

  • Paterson H L, Knott B, Waite A M. 2007. Microzooplankton community structure and grazing on phytoplankton, in an eddy pair in the Indian Ocean off Western Australia. Deep Sea Research Part II: Topical Studies in Oceanography, 54(8–10): 1076–1093, https://doi.org/10.1016/j.dsr2.2006.12.011.

    Article  Google Scholar 

  • Pilo G S, Oke P R, Coleman R, Rykova T, Ridgway K. 2018. Patterns of vertical velocity induced by eddy distortion in an ocean model. Journal of Geophysical Research: Oceans, 123(3): 2274–2292, https://doi.org/10.1002/2017JC013298.

    Article  Google Scholar 

  • Qiu C H, Mao H B, Liu H L, **e Q, Yu J C, Su D Y, Ouyang J, Lian S M. 2019. Deformation of a warm eddy in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(8): 5551–5564, https://doi.org/10.1029/2019JC015288.

    Article  Google Scholar 

  • Qu T D, Gao S, Fukumori I, Fine R A, Lindstrom E J. 2008. Subduction of south pacific waters. Geophysical Research Letters, 35(2): L02610.

    Article  Google Scholar 

  • Qu T D, Gao S, Fukumori I. 2013. Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model. Journal of Geophysical Research: Oceans, 118(4): 1982–1994.

    Article  Google Scholar 

  • Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404- https://doi.org/10.1016/j.ocemod.2004.08.002.

    Article  Google Scholar 

  • Shou W W, Zong H B, Ding P X, Hou L J. 2018. A modelling approach to assess the effects of atmospheric nitrogen deposition on the marine ecosystem in the Bohai Sea, China. Estuarine, Coastal and Shelf Science, 208: 36–48, https://doi.org/10.1016/j.ecss.2018.04.025.

    Article  Google Scholar 

  • Stevens D P. 1990. On open boundary conditions for three dimensional primitive equation ocean circulation models. Geophysical & Astrophysical Fluid Dynamics, 51(1–4): 103–133.

    Article  Google Scholar 

  • Sun W J, Dong C M, Tan W, Liu Y, He Y J, Wang J. 2018. Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea. Remote Sensing, 10(5): 795.

    Article  Google Scholar 

  • Tomczak M, Godfrey J S. 2003. Regional Oceanography: An Introduction. 2nd edn. Daya Publishing House, Delhi. 390p.

    Google Scholar 

  • Visbeck M, Marshall J, Haine T, Spall M. 1997. Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. Journal of Physical Oceanography, 27(3): 381–403.

    Article  Google Scholar 

  • Warner J C, Sherwood C R, Signell R P, Harris C K, Arango H G. 2008. Development of a three-dimensional- regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34(10): 1284–1306.

    Article  Google Scholar 

  • Wilkin J L. 2006. The summertime heat budget and circulation of southeast New England shelf waters. Journal of Physical Oceanography, 36(11): 1997–2011.

    Article  Google Scholar 

  • Wunsch C. 1999. Where do ocean eddy heat fluxes matter. Journal of Geophysical Research: Oceans, 104(C6): 13235–13249.

    Article  Google Scholar 

  • Xu G J, Dong C M, Liu Y, Gaube P, Yang J S. 2019. Chlorophyll rings around ocean eddies in the north pacific. Scientific Reports, 9(1): 2056.

    Article  Google Scholar 

  • Xu L X, Li P L, **e S P, Liu Q Y, Liu C, Gao W D. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communication, 7: 10505, https://doi.org/10.1038/ncomms10505.

    Article  Google Scholar 

  • Yang G, Yu W D, Yuan Y L, Zhao X, Wang F, Chen G X, Liu L, Duan Y L. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750, https://doi.org/10.1002/2015JC011130.

    Article  Google Scholar 

  • Yuan D L, Han W Q, Hu D X. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research: Oceans, 111(C11): C11007, https://doi.org/10.1029/2005JC003412.

    Article  Google Scholar 

  • Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324.

    Article  Google Scholar 

  • Zhang Z W, Tian J W, Qiu B, Zhao W, Chang P, Wu D X, Wan X Q. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349, https://doi.org/10.1038/srep24349.

    Article  Google Scholar 

Download references

Acknowledgment

Supercomputing resources were provided by High Performance Computing Center of Institute of Oceanology of Chinese Academy of Science. We also thank Dr. Ronghua ZHANG (Institute of Oceanology, Chinese Academy of Sciences) and Tangdong QU (University of California, Los Angeles) for their helpful advices. The authors would like also to thank reviewers for their comments and the developers of ROMS for open access to their code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Gao.

Additional information

Supported by the National Key R&D Program of China (No. 2016YFC0301203), the National Natural Science Foundation of China (No. 41676009), and the State Key Program of National Natural Science of China (No. 41730534)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, F., Gao, S. et al. Mass transport of a mesoscale eddy in the South China Sea identified by a simulated passive tracer. J. Ocean. Limnol. 40, 389–412 (2022). https://doi.org/10.1007/s00343-021-1069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1069-y

Keyword

Navigation