Log in

Interactions between Cryptosula and Watersipora (Bryozoa: Cheilostomata) on a ship’s hull in Qingdao Harbour (South Yellow Sea) after five and a half years of immersion

  • Ecology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The distributions of two ubiquitous fouling cheilostome bryozoans, Cryptosula pallasiana (Moll, 1803) and Watersipora sp., on a ship moored for almost six years in Qingdao Bay show differences with respect to illumination, Cryptosula being dominant on the side of the ship which was exposed to the sun and Watersipora dominating on the other side which was in shadow for most of the time. Competitive interactions for substrate space were nearly always won by Watersipora, which succeeded in overgrowing the edges of Cryptosula colonies regardless of the side of the ship. Reasons for the superiority of Watersipora in spatial competition with Cryptosula could include faster growth rate and the stronger feeding currents created by the larger lophophores of Watersipora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Salam K M, Ramadan S E. 2008. Fouling Bryozoa from some Alexandria harbours, Egypt. (II) encrusting species. Mediterranean Marine Science, 9 (2): 5–20.

    Article  Google Scholar 

  • Amui-Vedel A M, Hayward P J, Porter J S. 2007. Zooid size and growth rate of the bryozoan Cryptosula pallasiana Moll in relation to temperature, in culture and in its natural environment. Journal of Experimental Marine Biology and Ecology, 353 (1): 1–12.

    Article  Google Scholar 

  • Calvet L. 1900. Contribution à l’histoire naturelle des bryozoaires ectoproctes marins. Travaux de l'institut de zoologie de l'Université de Montpellier et de la station zoologique de Cette Memoire, 8: 1–488.

    Google Scholar 

  • Cohen A N. 2011. The exotics guide: non-native marine species of the North American Pacific coast. Center for Research on Aquatic Bioinvasions, Richmond, CA, and San Francisco Estuary Institute, Oakland, CA. September 2011. http://www.exoticsguide.org/. Accessed 2015-09-11.

    Google Scholar 

  • d’Orbigny A. 1852. Paléontologie française, Terrains Crétacés, V, Bryozoaires. Victor Masson, Paris. p.185–472.

    Google Scholar 

  • Fine M, Loya Y. 2003. Alternate coral–bryozoan competitive superiority during coral bleaching. Marine Biology, 142 (5): 989–996, http://dx.doi.org/10.1007/s00227-002-0982-7.

    Article  Google Scholar 

  • Floerl O, Pool T K, Inglis G J. 2004. Positive interactions between nonindigenous species facilitate transport by human vectors. Ecological Applications, 14(6):1724–1736, http://dx.doi.org/10.1890/03-5399.

    Article  Google Scholar 

  • Gordon D P, Mawatari S F. 1992. Atlas of marine-fouling Bryozoa of New Zealand ports and harbours. Miscellaneous Publication New Zealand Oceanographic Institute, 107: 1–52.

    Google Scholar 

  • Heller C. 1867. Die Bryozoen des adriatischen Meeres. Verhandlungen der Zoologisch -Botanischen Gesellschaft in Wien, 17: 77–136.

    Google Scholar 

  • Hincks T. 1882. Contributions towards a general history of the marine Polyzoa. Part X. Foreign Cheilostomata (Miscellaneous). Annals and Magazine of Natural History, 5 (10): 160–170.

    Google Scholar 

  • Jackson J B C. 1983. Biological determinants of present and past sessile animal distributions. In: Tevez M J S, McCall P L eds. Biotic Interactions in Recent and Fossil Benthic Communities. Springer, New York. p.39–107.

    Chapter  Google Scholar 

  • Kuklinski P, Sokolowski A, Ziolkowska M, Balazy P, Novosel M, Barnes D K A. 2013. Growth rate of selected sheetencrusting bryozoan colonies along a latitudinal transect: preliminary results. In: Ernst A, Schäfer P, Scholz J eds. Bryozoan Studies 2010. Springer, Berlin Heidelberg. p.155–167.

    Chapter  Google Scholar 

  • Lonhart S I. 2012. Growth and distribution of the invasive bryozoan Watersipora in Monterey Harbor, California. In: Steller D, Lobel L eds. Proceedings of the American Academy of Underwater Sciences 31st Symposium. AAUS, Dauphin Island, AL. p.89–98.

    Google Scholar 

  • Mackie J A, Darling J A, Geller J B. 2012. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species. Scientific Reports, 2: 871, http://dx.doi.org/10.1038/srep00871.

    Article  Google Scholar 

  • Mawatari S. 1952. On Watersipora cucullata (Busk) I. Systematic study. Miscellaneous Reports of the Tokyo Research Institute of Natural Resources, 25: 14–17.

    Google Scholar 

  • McKenzie L A, Johnston E L, Brooks R. 2012. Using clones and copper to resolve the genetic architecture of metal tolerance in a marine invader. Ecology and Evolution, 2(6):1319–1329. http://dx.doi.org/10.1002/ece3.41.

    Article  Google Scholar 

  • McKinney F K. 1992. Competitive interactions between related clades: evolutionary implications of overgrowth interactions between encrusting cyclostome and cheilostome bryozoans. Marine Biology, 114 (4): 645–652.

    Article  Google Scholar 

  • Moll J P C. 1803. Eschara, ex zoophytorum, seu, phytozoorum ordine pulcherrimum ac notatu dignissimum genus, novis speciebus auctum, methodice descriptum et iconibus ad naturam delineatis illustratum. Camesiniana, Vindobonae. p.1–70.

  • Nandakumar K, Tanaka M, Kikuchi T. 1993. Interspecific competition among fouling organisms in Tomioka Bay, Japan. Marine Ecology Progress Series, 94 (1): 43–50.

    Article  Google Scholar 

  • Nandakumar K, Tanaka M. 1994. Effects of neighboring organisms on the growth of three intertidal encrusting cheilostome bryozoans. Marine Ecology Progress Series, 114: 157–163.

    Article  Google Scholar 

  • O’Dea A, Okamura B. 1999. Influence of seasonal variation in temperature, salinity and food availability on module size and colony growth of the estuarine bryozoan Conopeum seurati. Marine Biology, 135 (4): 581–588.

    Article  Google Scholar 

  • Okada Y, Mawatari S. 1937. On the collection of Bryozoa along the coast of Onagawa Bay and its vicinity, the northern part of Honshu, Japan. Science Reports Tôhoku University, 11: 433–445.

    Google Scholar 

  • Okada Y. 1929. Report of the biological survey of Mutsu Bay, 12, Cheilostomatous Bryozoa of Muts Bay. Scien ces Report of the Tohoku Imperial University, 4: 11–35.

    Google Scholar 

  • Okamura B, Bishop J D D. 1988. Zooid size in cheilostome Bryozoans as an indicator of relative palaeotemperature. Palaeogeography, Palaeoclimatology, Palaeoecology, 66 (3-4): 145–152.

    Article  Google Scholar 

  • Okamura B. 1987. Seasonal changes in zooid size and feeding activity in epifaunal colonies of Electra pilosa. In: Ross J R P ed. Bryozoa: Present and Past. Western Washington University, Bellingham. p.197–203.

    Google Scholar 

  • Ostrovsky A N, O’Dea A, Rodríguez F. 2009. Comparative anatomy of internal incubational sacs in cupuladriid bryozoans and the evolution of brooding in free-living cheilostomes. Journal of Morphology, 270(12):1413–1430.

    Article  Google Scholar 

  • Ryland J S, de Blauwe H, Lord R, Mackie J A. 2009. Recent discoveries of alien Watersipora (Bryozoa) in Western Europe, with redescriptions of species. Zootaxa, 2093: 43–59.

    Google Scholar 

  • Seo J E. 1999. Taxonomic review of Korean Watersipora (Bryozoa, Gymnolaemata, Cheilostomata). Korean Journal of Systematic Zoology, 15 (2): 221–229.

    Google Scholar 

  • Sorte C J B, Williams S L, Zerebecki R A. 2010. Ocean warming increases threat of invasive species in a marine fouling community. Ecology, 91(8):2198–2204.

    Article  Google Scholar 

  • Trask J B. 1857. On some new microscopic organisms. Proceedings of the California Academy of Natural Sciences, 1: 99–102.

    Google Scholar 

  • Vieira L M, Jones M S, Taylor P D. 2014. The identity of the invasive fouling bryozoan Watersipora subtorquata (d’Orbigny) and some other congeneric species. Zootaxa, 3857 (2): 151–182.

    Article  Google Scholar 

  • Winston J E. 1982. Marine bryozoans (Ectoprocta) of the Indian River area, Florida. Bulletin of the American Museum of Natural History, 173: 99–176.

    Google Scholar 

Download references

Acknowledgments

We thank PENG Bo and the staffs of Qingdao Tony Machinery and Equipment Co. Ltd. who were helpful with the sample collection and the sites photos. Our thanks also go to the anonymous referees whose valuable comments improved the paper. Thanks go also to Tomáš Zágoršek for help with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Zágoršek.

Additional information

Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDA11020303, XDA11020305), the Chinese Academy of Sciences President’s International Fellowship Initiative (No. 2015VEA009), and the Project of Knowledge Innovation Project of Chinese Academy of Sciences (No. KSCX2-EW-Z-8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zágoršek, K., Wang, S. et al. Interactions between Cryptosula and Watersipora (Bryozoa: Cheilostomata) on a ship’s hull in Qingdao Harbour (South Yellow Sea) after five and a half years of immersion. Chin. J. Ocean. Limnol. 35, 1179–1188 (2017). https://doi.org/10.1007/s00343-017-6093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6093-6

Keywords

Navigation