Log in

21 kW, 166 fs pulses from passive mode-locked ytterbium-doped fiber laser employing Bi2O2Te nanosheets as saturable absorber in 1 μm

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Ultrafast pulsed lasers are pivotal in advanced domains such as optical communications, optical metrology, all-optical sampling, optical frequency combs, laser ranging, and laser machining, where saturable absorbers (SAs) are crucial components. Various SAs based on two-dimensional (2D) materials have attracted great attention in recent years due to their low cost, high stability, large modulation depth, broadband absorption, and excellent optical nonlinearity. In this work, Bi2O2Te nanosheets (NSs) based SA with a saturation intensity of 20.6 MW/cm2 and a modulation depth of 2.2% was prepared by utilizing liquid phase exfoliation (LPE) technique, which was firstly applied to a passively mode-locked ytterbium-doped fiber laser (YDFL). The experiment results show that a sequence of dissipative soliton (DS) pulse train with a repetition frequency of 3.303 MHz was obtained at 1032.5 nm. The pulse duration, signal-to-noise ratio (SNR), and maximum peak power were 166 fs, 70 dB, 21 kW, respectively. The results not only underscore the potential of Bi2O2Te NSs-based SA for ultrafast photonics applications around 1 μm wavelength, but also open a way for further exploration of high-performance, all-fiber laser sources utilizing 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, Laser Photonics Rev. 12, 2 (2018)

    Google Scholar 

  2. R. Du, Y. Wang, M. Cheng, P. Wang, H. Li, W. Feng, L. Song, J. Shi, J. He, Nat. Commun.Commun. 13, 6130 (2022)

    Article  ADS  Google Scholar 

  3. X. Chia, M. Pumera, Nat. Catal.Catal. 1, 909 (2018)

    Article  Google Scholar 

  4. J. Chen, L. Li, P. Gong, H. Zhang, S. Yin, M. Li, L. Wu, W. Gao, M. Long, L. Shan, F. Yan, G. Li, ACS Nano 16, 5 (2022)

    Google Scholar 

  5. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, Adv. Funct. Mater.Funct. Mater. 19, 19 (2009)

    ADS  Google Scholar 

  6. L. Zhao, D. Tang, H. Zhang, X. Wu, Q. Bao, K.P. Loh, Opt. Lett. 35, 21 (2010)

    Google Scholar 

  7. A. Martinez, Z. Sun, Nat. Photonics 7, 842 (2013)

    Article  ADS  Google Scholar 

  8. A. M. Markom, S. J. Tan, A. R. Muhammad, M. C. Paul, A. Dhar, S. Das, A. A. Latiff, S. W. Harun, Optik 223, 165635 (2020)

    Article  Google Scholar 

  9. H. Ahmad, N. H. A. Kahar, N. Yusoff, M. Z. Samion, S. A. Reduan, M. F. Ismail, L. Bayang, Y. Wang, S. Wang, J. K. Sahu, Opt. Fiber Technol.Fiber Technol. 69, 102851 (2022)

    Article  Google Scholar 

  10. H. Haris, S. W. Harun, A. R. Muhammad, C. L. Anyi, S. J. Tan, F. Ahmad, R. M. Nor, N. R. Zulkepely, H. Arof, Opt. Laser Technol. 88, 121–127 (2017)

    Article  ADS  Google Scholar 

  11. D. Z. Mohammed, W. A. Khaleel, A. H. Al-Janabi, Opt. Laser Technol. 97, 106–110 (2017)

    Article  ADS  Google Scholar 

  12. H. Ahmad, A. A. Kamely, M. K. A. Zaini, M. Z. Samion, A. K. Zamzuri, K. Thambiratnam, Laser Phys. Lett. 18, 8 (2021)

    Google Scholar 

  13. R. C. Rohit, A. D. Jagadale, S. K. Shinde, D.-Y. Kim, 2D Mater. 9, 4 (2022)

    Article  Google Scholar 

  14. H. Ahmad, N. H. Kamaruddin, S. N. Aidit, M. Z. Samion, M. K. A. Zaini, L. Bayang, Y. Wang, S. Wang, J. K. Sahu, M. Yasin, Opt. Laser Technol. 144, 107390 (2021)

    Article  Google Scholar 

  15. F. Wang, S. Yang, J. Wu, X. Hu, Y. Li, H. Li, X. Liu, J. Luo, T. Zhai, InfoMat. 3, 11 (2021)

    Article  Google Scholar 

  16. X. Zou, F. Tian, H. Liang, Y. Li, Y. Sun, C. Wang, ACS Nano 16, 11 (2022)

    Google Scholar 

  17. P. Ruleova, C. Drasar, P. Lostak, C.-P. Li, S. Ballikaya, C. Uher, Mater. Chem. Phys. 119, 1–2 (2010)

    Article  Google Scholar 

  18. J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. Liu, Y. Chen, B. Yan, H. Peng, Nat. Nanotechnol. Nanotechnol. 12, 530 (2017)

    Article  ADS  Google Scholar 

  19. Z. Zhang, T. Li, Y. Wu, Y. Jia, C. Tan, X. Xu, G. Wang, J. Lv, W. Zhang, Y. He, J. Pei, C. Ma, G. Li, H. Xu, L. Shi, H. Peng, H. Li, Adv. Mater. 31, 3 (2019)

    Google Scholar 

  20. R. Xu, S. Wang, Y. Li, H. Chen, T. Tong, Y. Cai, Y. Meng, Z. Zhang, X. Wang, F. Wang, IEEE Photon. Technol. Lett. 31, 13 (2019)

    Google Scholar 

  21. B. Chitara, T. B. Limbu, J. D. Orlando, Y. Tang, F. Yan, Nanoscale 30, 12 (2020)

    Google Scholar 

  22. S. D. N. Luu, P. Vaqueiro, J. Solid State Chem. 226, 219 (2015)

    Article  ADS  Google Scholar 

  23. Z. Zhang, J. Chen, W. Zhang, Z. Yu, C. Yu, H. Lu, Mater. Today Commun. 24, 101182 (2020)

    Article  Google Scholar 

  24. W. Ai, J. Chen, X. Dong, Z. Gao, Y. He, Z. Liu, H. Fu, F. Luo, J. Wu, Nano Lett. 22, 18 (2022)

    Article  Google Scholar 

  25. Z. Hui, X. Bu, Y. Wang, D. Han, J. Gong, L. Lu, X. Li, S. Yan, Adv. Opt. Mater. 10, 24 (2022)

    Article  Google Scholar 

  26. X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. M. Tsia, K. K. Y. Wong, IEEE J. Sel. Top. Quantum Electron. J. Sel. Top. Quantum Electron. 20, 5 (2014)

    ADS  Google Scholar 

  27. J. Q. Li, C. Cheng, M. Y. Duan, Appl. Surf. Sci. 618, 156541 (2023)

    Article  Google Scholar 

  28. E. P. Ippen, Appl Phys B-Lasers O. 58, 159–170 (1994)

    Article  ADS  Google Scholar 

  29. L. Guo, Z. Gan, X. Liang, IEEE Photon. J. 14, 2 (2022)

    Google Scholar 

  30. J. Qiao, S. Ahmed, P. K. Cheng, R. Fan, A. M. Saleque, M. N. A. S. Ivan, J. Yu, G. Liu, S. Feng, Y. H. Tsang, Opt. Laser Technol. 158, 320 (2023)

    Article  Google Scholar 

  31. H. Pan, H. Chu, Z. Pan, Y. Li, S. Zhao, D. Li, J. Materiomics 9, 4 (2023)

    Google Scholar 

  32. E. Cai, J. Xu, Y. **a, L. Hao, Q. Zhang, S. Zhang, L. Teng, F. Lou, M. Wang, X. Wang, A. Wang, T. Li, Opt. Laser Technol. 150, 108003 (2022)

    Article  Google Scholar 

  33. E. Cai, X. Cui, L. Guo, X. Fan, S. Zhang, B. Zhao, F. Luo, Seventeenth National Conference on Laser Technology and Optoelectronics 12501, 1250114 (2022)

    Google Scholar 

  34. G. Li, W. Du, S. Sun, Z. Chen, H. Liu, Q. Lu, X. Sun, Y. Ma, Y. Jia, F. Chen, A.C.S. Appl, Nano Mater. 6, 2 (2023)

    Google Scholar 

  35. S. Huang, Y. Wang, J. He, X. Su, J. Liu, Chin. Opt. Lett. 20, 2 (2022)

    Google Scholar 

  36. G. Li, Q. Xu, H. Nie, C. Wang, R. Wang, K. Yang, J. He, B. Zhang, Opt. Mater. Express 12, 4 (2022)

    Google Scholar 

  37. R. S. M. Soboh, A. H. H. Al-Masoodi, F. N. A. Erman, A. H. H. Al-Masoodi, B. Nizamani, H. Afro, R. Apsari, S. W. Harun, Front. Optoelectron. 15, 1 (2022)

    Article  Google Scholar 

  38. X. Feng, D. **n, Z. Zhang, J. Liu, T. Ning, J. Yu, W. Zhou, J. Liu, Opt. Laser Technol. 157, 108632 (2023)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Fund of China (61875165), the Natural Science Basic Research Program of Shaanxi (2022JQ-638), the Key Research and Development Program of Shaanxi (2022GY-008), the Shaanxi Provincial Innovation Capability Support Program Project (2022PT-15), and the Shaanxi Provincial Department of Education Collaborative Innovation Project (20JY060).

Author information

Authors and Affiliations

Authors

Contributions

Zhanqiang Hui, Revised and polished the manuscript. Zhaofeng Yang, Wrote the original manuscript. Dongdong Han, Tiantian Li, Provided assistance on formulas. Jiamin Gong, **aohui Li, Provided ideas and software assistance.

Corresponding author

Correspondence to Zhan-Qiang Hui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, ZQ., Yang, ZF., Han, DD. et al. 21 kW, 166 fs pulses from passive mode-locked ytterbium-doped fiber laser employing Bi2O2Te nanosheets as saturable absorber in 1 μm. Appl. Phys. B 130, 87 (2024). https://doi.org/10.1007/s00340-024-08230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08230-z

Navigation