Log in

Vectorial diffraction based beam sha**

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A beam sha** method based on the vectorial diffraction is proposed in this paper. We modify the Rayleigh–Sommerfeld vectorial diffraction integrals based on the time reversal symmetry of Maxwell’s equations. Thus, the forward and backward vectorial diffraction transformations can maintain the self-consistency of the iterative beam propagations in the vectorial diffraction beam sha** system. The proposed method can be used to design a phase plate that can be used to reconstruct an optical field with the desired intensity distribution. The proposed method is more rigorous than the scalar diffraction-based method and has constraints on the design of each component of the optical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available on request to the authors.

References

  1. F.M. Dickey, T.E. Lizotte, Laser beam sha** applications (Taylor & Francis Group, Boca Raton, 2017)

    Book  Google Scholar 

  2. D. Liu, Y. Wang, Z. Zhai, Z. Fang, Q. Tao, W. Perrie, S.P. Edwarson, G. Dearden, Dynamic laser beam sha** for material processing using hybrid holograms. Optics Laser Techn 102, 68–73 (2018)

    Article  ADS  Google Scholar 

  3. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K.J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, U.D. Zeitner, Advanced mask aligner lithography: new illumination system. Opt. Express 18(20), 20968–20978 (2010)

    Article  ADS  Google Scholar 

  4. H. Aagedal, M. Schmid, S. Egner, J.M. Quade, T. Beth, F. Wyrowski, Analytical beam sha** with application. J. Opt. Soc. Am. A 14(7), 1549–1553 (1997)

    Article  ADS  Google Scholar 

  5. X. Tang, F. Nan, Z. Yan, Rapidly and accurately sha** the intensity and phase of light for optical nano-manipulation. Nanoscale Adv 2(6), 2540–2547 (2020)

    Article  ADS  Google Scholar 

  6. Z. Yuan, S. Tao, Generation of phase-gradient optical beams with an iterative algorithm. J. Opt. 16(10), 105701 (2014)

    Article  ADS  Google Scholar 

  7. S. Tao, W. Yu, Beam sha** of complex amplitude with separate constraints on the output beam. Opt. Express 23(2), 1052–1062 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Wu, S. Cheng, S. Tao, Simultaneous sha** of amplitude and phase of light in the entire output plane with a phase-only hologram. Sci. Rep. 5, 15426 (2015)

    Article  ADS  Google Scholar 

  9. G. Zhou, X. Yuan, P. Dowd, Y. L. Lam, Y. C. Chan, Design of diffractive phase elements for beam sha**. J. Opt. Soc. Am. A 8(4) (2001)

  10. V.A. Popescu, N.N. Puscas, Determination of propagation constants in a bent Ti:LiNbO3 optical waveguide by using finite element method. Opt. Commun. 254(4), 197–202 (2005)

    Article  ADS  Google Scholar 

  11. K. Hirayama, E.N. Glytsis, T.K. Gaylord, Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings. J. Opt. Soc. Am. A 14(4), 907–917 (1997)

    Article  ADS  Google Scholar 

  12. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  ADS  MATH  Google Scholar 

  13. J. Jiang, G.P. Nordin, A rigorous unidirectional method for designing finite aperture diffractive optical elements. Opt. Express 7(6), 237–242 (2000)

    Article  ADS  Google Scholar 

  14. D.W. Prather, J.N. Mait, M.S. Mirotznik, J.P. Collins, Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements. J. Opt. Soc. Am. A 15(6), 1599–1607 (1998)

    Article  ADS  Google Scholar 

  15. M. Mansuripur, Certain computational aspects of vector diffraction problems. J. Opt. Soc. Am. A 6(5), 786–805 (1989)

    Article  ADS  Google Scholar 

  16. Y. Lin, J. Hu, An improved vector model for analyzing the diffraction field of sub-wavelength diffractive optical elements. Optik 121(14), 1337–1341 (2010)

    Article  ADS  Google Scholar 

  17. Y. Lin, J. Hu, K. Wu, Vector fuzzy control iterative algorithm for the design of sub-wavelength diffractive optical elements for beam sha**. Opt. Commun. 282(16), 3210–3215 (2009)

    Article  ADS  Google Scholar 

  18. T.G. Jabbour, S.M. Kuebler, Vectorial beam sha**. Opt. Express 16(10), 7203–7213 (2008)

    Article  ADS  Google Scholar 

  19. S.N. Khonina, S.G. Volotovskiy, N.S. Fidirko, Iterative approach to solve the inverse diffraction problem under sharp focusing conditions. Optical Memory and Neural Networks 26(1), 18–25 (2017)

    Article  Google Scholar 

  20. D.P. Levadoux, Stable integral equations for the iterative solution of electromagnetic scattering problems. C R Phys. 7, 518–532 (2006)

    Article  ADS  Google Scholar 

  21. M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. A 71(7), 811–818 (1981)

    Article  ADS  Google Scholar 

  22. Z. Zhou and T. J. Drabik, Optimized binary, phase-only, diffractive optical element with subwavelength features for 1.55 \(\mu m\). J. Opt. Soc. Am. A 12(5), 1104–1112 (1995)

  23. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, S. Kawakami, Cylindrical Vector Laser Beam Generated by the Use of a Photonic Crystal Mirror. Appl. Phys. Express 1, 022008 (2008)

    Article  ADS  Google Scholar 

  24. Z. Yusoff, J.H. Lee, W. Belardi, T.M. Monro, P.C. Teh, D.J. Richardson, Raman effects in a highly nonlinear holey fiber:amplification and modulation. Opt. Lett. 27(6), 424 (2002)

    Article  ADS  Google Scholar 

  25. Q. Song, X. Liu, C.W. Qiu, P. Genevet, Vectorial metasurface holography. Appl. Phys. Rev. 9(20), 011311 (2022)

    Article  ADS  Google Scholar 

  26. W.L. Barnes, Surface plasmon subwavelength optics. Nature (London) 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  27. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9(3), 193–204 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YL, ST contributed to the conception of the study; YL, ST contributed significantly to analysis and manuscript preparation;YL performed the data analyses and wrote the manuscript; YL, ST helped perform the analysis with constructive discussions

Corresponding author

Correspondence to Shaohua Tao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tao, S. Vectorial diffraction based beam sha**. Appl. Phys. B 129, 144 (2023). https://doi.org/10.1007/s00340-023-08086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08086-9

Navigation