Log in

Enhancement of molecular mobility in solid polymers by light: fundamentals and applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Materials containing photoactive molecules are of great importance in applications in switching, data storage, holography, integrated optics, nonlinear optics, actuation, and light to mechanical energy transduction. In particular, the photoactive molecules confer to polymers the possibility of undergoing molecular and macroscopic motion at temperatures far below the glass transition temperature \(\left( {T_{{\text{g}}} } \right)\); a feature, which alleviates the need for heating to near \(T_{{\text{g}}}\) to, for example, induce molecular orientation and motion. Sub-\(T_{{\text{g}}}\) molecular motion is frozen without light absorption. We provide an overview of enhancement of molecular mobility in solid polymers by light, and we discuss its application in polymer photomechanics and photo-orientation leading to mass motion and surface morphology structuring and actuation, and to linear and nonlinear optical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced with permission from 66, 27, 82, and 18 for (a), (b), (c), and (d); respectively

Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Sekkat, W. Knoll, Photoreactive organic thin films (Academic Press, New York, 2002). (and references therein)

    Google Scholar 

  2. K. Singer, J.E. Sohn, S.J. Lalama, Appl. Phys. Lett. 49, 248 (1986)

    Article  ADS  Google Scholar 

  3. M.A. Mortazavi, A. Knoesen, S.T. Kowel, B.G. Higgins, A. Dienes, J. Opt. Soc. Am. B 6, 633–641 (1989)

    Article  Google Scholar 

  4. Z. Sekkat, M. Dumont, Appl. Phys. B 54, 486 (1992)

    Article  ADS  Google Scholar 

  5. Z. Sekkat, M. Dumont, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. B Nonlinear Opt. 2, 359 (1992)

  6. W. Gotze, L. Sjogren, Rep. Prog. Phys. 55, 241 (1992)

    Article  ADS  Google Scholar 

  7. Z. Sekkat, Phys. Rev. E. 102, 032501 (2020)

    Article  ADS  Google Scholar 

  8. P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, L. Brehmer, Nat. Mater. 4, 699 (2005)

    Article  ADS  Google Scholar 

  9. G.J. Fang, J.E. Maclennan, Y. Yi, M.A. Glaser, M. Farrow, E. Korblova, D.M. Walba, T.E. Furtak, N.A. Clark, Nat. Commun. 4, 1521 (2013)

    Article  ADS  Google Scholar 

  10. J. Vapaavuori, A. Laventure, C.G. Bazurin, O.L. Lebel, C. Pellerin, J. Am. Chem. Soc. 137, 13510 (2015)

    Article  Google Scholar 

  11. S. Moujdi, A. Rahmouni, T. Mahfoud, D.V. Nesterenko, M. Halim, Z. Sekkat, J. Appl. Phys. 124, 213103 (2018)

    Article  ADS  Google Scholar 

  12. Z. Sekkat, OSA Continuum 1, 668–681 (2018)

    Article  Google Scholar 

  13. G. Smets, Adv. Polym. Sci. 50, 17–44 (1983). (and references therein)

    Article  Google Scholar 

  14. V. Teboul, M. Saiddine, J.-M. Nunzi, Phys. Rev. Lett. 103, 265701 (2009)

    Article  ADS  Google Scholar 

  15. G. Tiberio, L. Muccioli, R. Berardi, C. Zannoni, ChemPhysChem 11, 1019 (2010)

    Article  Google Scholar 

  16. P. Hamm, S.M. Ohline, W. Zinth, J. Chem. Phys. 106, 519–529 (1997)

    Article  ADS  Google Scholar 

  17. S. Elhani, I. Maouli, S. Refki, S. Hayashi, Z. Sekkat, J. Opt. 21, 115401 (2019)

    Article  ADS  Google Scholar 

  18. M. Maeda, H. Ishitobi, Z. Sekkat, S. Kawata, Appl. Phys. Lett. 85, 351 (2004)

    Article  ADS  Google Scholar 

  19. A. Rahmouni, Y. Bougdid, S. Moujdi, D.V. Nesterenko, Z. Sekkat, J. Phys. Chem. B 120, 11317 (2016)

    Article  Google Scholar 

  20. F. Weigert, Verh. Phy. Ges. 21, 485 (1919)

    Google Scholar 

  21. T.D. Ebralidze, N.A. Ebralidze, M.A. Bazadze, Appl. Opt. 41, 78 (2002)

    Article  ADS  Google Scholar 

  22. B.S. Neoport, O.V. Stolbova, Opt. Spectrosc. 14, 331 (1963)

    ADS  Google Scholar 

  23. T. Todorov, L. Nikolova, N. Tomova, Appl. Opt. 23, 4309 (1984)

    Article  ADS  Google Scholar 

  24. M. Eich, J.H. Wendorff, Makromol. Chem. Rapid. Commun. 8, 467 (1987)

    Article  Google Scholar 

  25. Y. Shi, W.H. Steier, L. Yu, M. Shen, L.R. Dalton, Appl. Phys. Lett. 58, 1131 (1991)

    Article  ADS  Google Scholar 

  26. P. Rochon, J. Gosselin, A. Natansohn, S. **e, Appl. Phys. Lett. 60, 4 (1992)

    Article  ADS  Google Scholar 

  27. Z. Sekkat, M. Dumont, SPIE Proc. 1774, 188 (1992)

    Google Scholar 

  28. Z. Sekkat, M. Dumont, Synth. Met. 54, 373 (1993)

    Article  Google Scholar 

  29. F. Chara, F. Kajzar, J.M. Nunzi, P. Raimond, E. Idiart, Opt. Lett. 18, 941 (1993)

    Article  ADS  Google Scholar 

  30. P. Rochon, E. Batalla, A. Natansohn, Appl. Phys. Lett. 66, 136 (1995)

    Article  ADS  Google Scholar 

  31. D.Y. Kim, S.K. Tripathy, L. Li, J. Kumar, Appl. Phys. Lett. 66, 1166 (1995)

    Article  ADS  Google Scholar 

  32. R. Lovrien, Proc. Natl. Acad. Sci. USA 57, 236 (1967)

    Article  ADS  Google Scholar 

  33. F. Agolini, F.P. Gay, Macromolecules 3, 349 (1970)

    Article  ADS  Google Scholar 

  34. T.J. White, J. Polym. Sci. B Polym. Phys. 50, 877 (2012)

    Article  ADS  Google Scholar 

  35. Z. Sekkat, Appl. Opt. 55, 259 (2016)

    Article  ADS  Google Scholar 

  36. S. Bian, J.M. Williams, D.Y. Kim, L. Li, S. Balasubramanian, J. Kumar, S. Tripathy, J. Appl. Phys. 86, 4498 (1999)

    Article  ADS  Google Scholar 

  37. N.K. Viswanathan, S. Balasubramanian, L. Li, S.K. Tripathy, J. Kumar, Jpn. J. Appl. Phys. 38, 5928 (1999)

    Article  ADS  Google Scholar 

  38. M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, Y. Kawata, Macromolecules 34, 7471 (2001)

    Article  ADS  Google Scholar 

  39. A. Natansohn, P. Rochon, Chem. Rev. 102, 4139–4176 (2002)

    Article  Google Scholar 

  40. R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, J.-P. Boilot, K. Lahlil, J. Appl. Phys. 94, 2060 (2003)

    Article  ADS  Google Scholar 

  41. F.L. Labarthet, J.L. Bruneel, T. Buffeteau, C. Sourisseau, J. Phys. Chem. B 108, 6949 (2004)

    Article  Google Scholar 

  42. T. Grosjean, D. Courjon, Opt. Express 14, 2203 (2006)

    Article  ADS  Google Scholar 

  43. Y. Gilbert, R. Bachelot, P. Royer, A. Bouhelier, P. Wiederrrecht, L. Novotny, Opt. Lett. 31, 613 (2006)

    Article  ADS  Google Scholar 

  44. H. Ishitobi, M. Tanabe, Z. Sekkat, S. Kawata, Appl. Phys. Lett. 91, 091911 (2007)

    Article  ADS  Google Scholar 

  45. H. Ishitobi, M. Tanabe, Z. Sekkat, S. Kawata, Opt. Express 15, 652 (2007)

    Article  ADS  Google Scholar 

  46. N. Tsutsumi, A. Fujihara, J. Appl. Phys. 101, 033110 (2007)

    Article  ADS  Google Scholar 

  47. H. Ishitobi, S. Shoji, T. Hiramatsu, H.-B. Sun, Z. Sekkat, S. Kawata, Opt. Express 16, 14106 (2008)

    Article  ADS  Google Scholar 

  48. A. Sobolewska, A. Miniewicz, J. Phys. Chem. B 112, 4526–4535 (2008)

    Article  Google Scholar 

  49. V. Toshchevikov, V.P. Toshchevikov, M. Saphiannikova, G. Heinrich, J. Phys. Chem. B 113, 5032–5045 (2009)

    Article  Google Scholar 

  50. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, M. Pasqualino, Nat. Commun. 3, 989 (2012)

    Article  ADS  Google Scholar 

  51. S. Lee, H.S. Kang, J.-K. Park, Adv. Mater. 24, 2069 (2012)

    Article  Google Scholar 

  52. Z. Sekkat, S. Kawata, Laser Photon. Rev. 8, 1–26 (2014)

    Article  ADS  Google Scholar 

  53. A. Priimagi, A. Kravchenko, J. Polym. Sci. B Polym. Phys. 52, 163–182 (2014)

    Article  ADS  Google Scholar 

  54. M. Watabe, G. Juman, K. Myamoto, T. Omatsu, Sci. Rep. 4, 4281 (2014)

    Article  ADS  Google Scholar 

  55. H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, Y. Inouye, ACS Photon. 1, 190–197 (2014)

    Article  Google Scholar 

  56. T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, K. Dholakia, Adv. Opt. Mater. 7, 1801672 (2019)

    Article  Google Scholar 

  57. K. Masuda, R. Shinozaki, A. Shiraishi, M. Ichijo, K. Yamane, K. Miyamoto, T. Omatsu, J. Nanophotonics 14, 016012 (2020)

    Article  ADS  Google Scholar 

  58. D. Nesterenko, S. Moujdi, S. Hayashi, Z. Sekkat, J. Appl. Phys. 127, 243106 (2020)

    Article  ADS  Google Scholar 

  59. T. Kobayashi, T. Saito, Chapter 2 in reference 1, pp. 49–62 (2002)

  60. T. Ikeda, J. Mamiya, Y. Yu, Angew. Chem. Int. Ed. 46, 506 (2007)

    Article  Google Scholar 

  61. T.J. White, Photomechanical materials, composites, and systems: wireless transduction of light into work (Wiley, 2017)

  62. B. Zhou, E. Bernhardt, A. Bhuyan, Z. Ghorbanishiadeh, N. Rasmussen, J. Lanska, M.G. Kuzyk, J. Opt. Soc. Am. B 36(6), 1492–1517 (2019)

    Article  ADS  Google Scholar 

  63. M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955)

    Article  Google Scholar 

  64. M. Irie, Y. Hirano, S. Hashimoto, K. Hayashi, Macromolecules 14, 262 (1981)

    Article  ADS  Google Scholar 

  65. M. Irie, Y. Hirano, S. Hashimoto, K. Hayashi, Macromolecules 12, 1176 (1979)

    Article  ADS  Google Scholar 

  66. Z. Sekkat, G. Kleideiter, W. Knoll, J. Opt. Soc. Am. B 18, 1854 (2001)

    Article  ADS  Google Scholar 

  67. We use: \(u =N{v\sigma }_{T}{\phi }_{TC}\mathfrak{I}\), \({u}_{r}=0\), \({\sigma }_{T}^{532\mathrm{nm}}\sim 7.4\times {10}^{-17}{\mathrm{cm}}^{2}{\mathrm{molecule}}^{-1}\) for trans-DR1, \({\phi }_{TC}\sim 0.11\); and \(N={10}^{21}\mathrm{molecules}.{\mathrm{cm}}^{-3}\)

  68. C.D. Eisenbach, Ber. Bunsenges. Phys. Chem. 84, 680 (1980)

    Article  Google Scholar 

  69. W.D. Drotning, E.P. Roth, J. Mater. Sci. 24, 3137 (1989)

    Article  ADS  Google Scholar 

  70. D.M. Burland, R.D. Miller, C.A. Walsh, Chem. Rev. 94, 31 (1994)

    Article  Google Scholar 

  71. T. Verbiest, D.M. Burland, M.C. Jurich, V.Y. Lee, R.D. Miller, W. Volksen, Science 268, 1604 (1995)

    Article  ADS  Google Scholar 

  72. Y.Q. Shi, C. Zhang, H. Zhang, J.H. Bechtel, L.R. Dalton, B.H. Robinson, W.H. Steier, Science 288, 119 (2000)

    Article  ADS  Google Scholar 

  73. H.J. Xu, F.G. Liu, D.L. Elder, L.E. Johnson, Y. de Coene, K. Clays, B.H. Robinson, L.R. Dalton, Chem. Mater. 32, 1408 (2020)

    Article  Google Scholar 

  74. Z. Sekkat, Ph. Pretre, A. Knoesen, W. Volksen, V.Y. Lee, R.D. Miller, J. Wood, W. Knoll, J. Opt. Soc. Am. B 15, 401 (1998)

    Article  ADS  Google Scholar 

  75. Z. Sekkat, J. Wood, E.F. Aust, W. Knoll, W. Volksen, R.D. Miller, J. Opt. Soc. Am. B 13, 1713 (1996)

    Article  ADS  Google Scholar 

  76. Z. Sekkat, A. Knoesen, V.Y. Lee, R.D. Miller, J. Polym. Sci. B Polym. Phys. 36, 1669 (1998)

    Article  ADS  Google Scholar 

  77. R. Loucif-Saibi, K. Nakatani, J.A. Delaire, Z. Sekkat, M. Dumont, Chem. Mater. 5, 229 (1993)

    Article  Google Scholar 

  78. H. Aoki, K. Ishikawa, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys. 35, 168 (1996)

    Article  ADS  Google Scholar 

  79. Z. Sekkat, J. Wood, Y. Geerts, W. Knoll, Langmuir 11, 2856–2859 (1995)

    Article  Google Scholar 

  80. C.D. Eisenbach, Makromol. Chem. 180, 565 (1979)

    Article  Google Scholar 

  81. C.D. Eisenbach, Polymer 21, 1175 (1980)

    Article  Google Scholar 

  82. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R.D. Miller, A. Knoesen, J. Opt. Soc. Am. B 14, 829 (1997)

    Article  ADS  Google Scholar 

  83. Z. Sekkat, D. Yasumatsu, S. Kawata, J. Phys. Chem. B 106, 12407 (2002)

    Article  Google Scholar 

  84. Z. Sekkat, J. Wood, W. Knoll, J. Phys. Chem. 99, 17226 (1995)

    Article  Google Scholar 

  85. Z. Sekkat, Chapter 3 in reference 1, pp. 64–102 (2002) (and references therein)

  86. H. Ishitobi, Z. Sekkat, S. Kawata, J. Chem. Phys. 125, 164718 (2006)

    Article  ADS  Google Scholar 

  87. Z. Sekkat, Opt. Commun. 229, 291–303 (2004)

    Article  ADS  Google Scholar 

  88. Y. Zhao, T. Ikeda, Smart light-responsive materials. Azobenzene-containing polymers and liquid crystals (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  89. I. Zebger, M. Rutloh, U. Hoffman, J. Stumpe, H.W. Siesler, S. Hvilsted, J. Phys. Chem. A 106, 3454–3462 (2002)

    Article  Google Scholar 

  90. Y. Zakrevskyy, J. Stumpe, B. Smarsly, C. Faul, Phys. Rev. E 75, 031703 (2007)

    Article  ADS  Google Scholar 

  91. A. Bobrovsky, V. Shibaev, V. Hamplova, M. Kaspar, M. Glogarova, Monatsh. Chem. 140, 789–799 (2009)

    Article  Google Scholar 

  92. M. Kreuzer, E. Benkler, D. Paparo, G. Casillo, L. Marrucci, Phys. Rev. E 68, 011701 (2003)

    Article  ADS  Google Scholar 

  93. L. Marrucci, Mol. Cryst. Liq. Cryst. 321, 57–75 (1998)

    Article  Google Scholar 

  94. V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. Huang, H.-S. Kwok, Phys. Rev. E 69, 061713 (2004)

    Article  ADS  Google Scholar 

  95. A. Kiselev, V. Chigrinov, H.-S. Kwok, Phys. Rev. E 80, 011706 (2009)

    Article  ADS  Google Scholar 

  96. J.A. Delaire, K. Nakatani, Chem. Rev. 100, 1817–1846 (2000)

    Article  Google Scholar 

  97. Z. Sekkat, Chapter 8 in reference 1, pp. 271–287 (2002) (and references therein)

  98. Z. Sekkat, W. Knoll, J. Opt. Soc. Am. B 12, 1855–1867 (1995)

    Article  ADS  Google Scholar 

  99. R.A. Hill, S. Dreher, A. Knoesen, D. Yankelevich, Appl. Phys. Lett. 66, 2156 (1995)

    Article  ADS  Google Scholar 

  100. A. Donoval, E. Toussaere, S. Brasselet, J. Zyss, Opt. Mater. 12, 215 (1999)

    Article  ADS  Google Scholar 

  101. C. Fiorini, F. Charra, J.-M. Nunzi, P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997)

    Article  ADS  Google Scholar 

  102. Z. Sekkat, J. Opt. Soc. Am. B 27, 132 (2010)

    Article  ADS  Google Scholar 

  103. H. Ishitobi, T. Akiyama, Z. Sekkat, Y. Inouye, J. Phys. Chem. C 124, 26037 (2020)

    Article  Google Scholar 

  104. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Nat. Mater. 3, 307 (2004)

    Article  ADS  Google Scholar 

  105. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288–290 (1986)

    Article  ADS  Google Scholar 

  106. V.G. Shvedov, A.S. Desyatnikov, A.V. Rode, W. Krolikowski, Y.S. Kivshar, Opt. Express 17(7), 5743–5757 (2009)

    Article  ADS  Google Scholar 

  107. H. Finkelmann, E. Nishikawa, G.G. Pereira, M. Warner, Phys. Rev. Lett. 87, 015501 (2001)

    Article  ADS  Google Scholar 

  108. S. Serak, N. Tabiryan, T.J. White, R.A. Vaia, J. Bunning, Soft Matter 6, 779–783 (2010)

    Article  ADS  Google Scholar 

  109. T. White, S.V. Serak, N.V. Tabiryan, R.A. Vaia, T.J. Bunning, J. Mater. Chem. 19, 1080–1085 (2009)

    Article  Google Scholar 

  110. T. Ube, T. Ikeda, Angew. Chem. Int. Ed. 5, 10290–10299 (2014)

    Article  Google Scholar 

  111. M.G. Kuzyk, N.J. Dawson, Adv. Opt. Photonics 12, 847 (2020)

    Article  ADS  Google Scholar 

  112. T. White, D.J. Broer, Nat. Mater. 14, 1087 (2015)

    Article  ADS  Google Scholar 

  113. D.H. Wang, J.J. Wie, K.M. Lee, T.J. White, L.-S. Tan, Macromolecules 47, 659–667 (2014)

    Article  ADS  Google Scholar 

  114. D.J. Welker, M.G. Kuzyk, Appl. Phys. Lett. 64, 809–811 (1994)

    Article  ADS  Google Scholar 

  115. K.M. Lee, D.H. Wang, H. Koerner, R.A. Vaia, L.-S. Tan, T.J. White, Angew. Chem. Int. Ed. 51, 4117–4121 (2012)

    Article  Google Scholar 

  116. K.M. Lee, D.H. Wang, H. Koerner, R.A. Vaia, L.-S. Tan, T.J. White, Macromol. Chem. Phys. 214, 1189–1194 (2013)

    Article  Google Scholar 

  117. D.H. Wang, L.-S. Tan, ACS Macro Lett. 2019(8), 546–552 (2019)

    Article  Google Scholar 

  118. D.H. Wang, K.M. Lee, H. Koerner, Z. Yu, R.A. Vaia, T.J. White, L.-S. Tan, Macromol. Mater. Eng. 297, 1167–1174 (2012)

    Article  Google Scholar 

  119. B.K.M. Lee, H. Koerner, D.H. Wang, L.-S. Tan, T.J. White, R.A. Vaia, Macromolecules 45, 7527–7534 (2012)

    Article  ADS  Google Scholar 

  120. J.J. Wie, D.H. Wang, T.J. White, L.-S. Tan et al., J. Mater. Chem. C 6, 5964–5974 (2018)

    Article  Google Scholar 

  121. M.L. Baczkowski, D.H. Wang, D.H. Lee, K.M. Lee, M.L. Smith, T.J. White, L.-S. Tan, ACS Macro Lett. 6, 1432–1437 (2017)

    Article  Google Scholar 

  122. D.H. Wang, K.M. Lee, D.H. Lee, M. Baczkowski, J.G. Lee, J.J. Wie, L.-S. Tan, ACS. Appl. Mater Interfaces 13, 48127–48140 (2021)

    Article  Google Scholar 

  123. A. Kozanecka-Szmigiel, E. Schab-Balcerzak, D. Szmigiel, J. Konieczkowska, J. Mater. Chem. C 7, 4032–4037 (2019)

    Article  Google Scholar 

  124. R. Medishetty, A. Husain, Z. Bai, T. Runcevski, R.E. Dinnebier, P. Naumov, J.J. Vital, Angew. Chem. Int. Ed. 53, 5907–5911 (2014)

    Article  Google Scholar 

  125. P. Naumov, S. Chizhik, M.K. Pamda, N.K. Nath, E. Boldyreva, Chem. Rev. 115, 12440–12490 (2015)

    Article  Google Scholar 

  126. G. van der Veen, R. Noguet, W. Prins, Photochem. Photobiol 19, 197–204 (1974)

    Article  Google Scholar 

  127. M. Ishikawa, N. Kitamura, H. Masuhara, M. Irie, Makromol. Chem. Rapid Commun. 12, 687–690 (1991)

    Article  Google Scholar 

  128. P.-G. de Gennes, C.R. Seances, Acad. Sci. Ser. B 281, 101–103 (1975)

    Google Scholar 

  129. H. Finkelmann, H.-J. Kock, G. Rehage, Makromol. Chem. Rapid Commun. 2, 317–322 (1981)

    Article  Google Scholar 

  130. T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, K. Ichimura, Langmuir 9, 211–218 (1993)

    Article  Google Scholar 

  131. D. Corbett, C. Xuan, M. Warner, Phys. Rev. E 92, 0132206 (2015)

    Article  Google Scholar 

  132. D. Corbett, C.L. van Oosten, M. Warner, Phys. Rev. A 78, 013823 (2008)

    Article  ADS  Google Scholar 

  133. M.-H. Li, P. Keller, B. Li, X. Wang, M. Brunet, Adv. Mater. 15, 569 (2003)

    Article  Google Scholar 

  134. Y. Yu, M. Nakano, T. Ikeda, Nature 425, 145 (2003)

    Article  ADS  Google Scholar 

  135. Y. Yu, M. Nakano, A. Shishido, T. Shiono, T. Ikeda, Chem. Mater. 16, 1637 (2004)

    Article  Google Scholar 

  136. M. Yamada, M. Kondo, J.-I. Mamiya, Y. Yu, M. Kinoshita, C.J. Barrett, T. Ikeda, Angew. Chem. Int. Ed. 47, 4986 (2008)

    Article  Google Scholar 

  137. A. Bunea, D. Martella, S. Nocentini, C. Parmeggiani, R. Taboryski, D.S. Wiersma, Adv. Intell. Sysyt. 3, 2000256 (2021)

    Article  Google Scholar 

  138. R.H. Lozier, R.A. Bogomolni, W. Stoeckenius, Biophys J. 15, 955–962 (1975)

    Article  ADS  Google Scholar 

  139. R.R. Birge, Biochim. Biophys. Acta. 1016, 293–327 (1990)

    Article  Google Scholar 

  140. G. Jekely, Phil. Trans. R. Soc. B. 364, 2795–2808 (2009)

    Article  Google Scholar 

  141. Q. Wang, R.W. Schoenlein, L.A. Peteau, R.A. Mathies, C.V. Shank, Science 266, 422–424 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouheir Sekkat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekkat, Z. Enhancement of molecular mobility in solid polymers by light: fundamentals and applications. Appl. Phys. B 128, 19 (2022). https://doi.org/10.1007/s00340-021-07740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07740-4

Navigation