Log in

22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz

  • Published:
Applied Physics B Aims and scope Submit manuscript

A Correction to this article was published on 10 February 2020

This article has been updated

Abstract

We measure the wavefront distortions of a high peak power ultrashort (23 fs) laser system under high average power load. After 6 min—100 Hz operation of the laser at full average power (> 22 W after compression), the thermally induced wavefront distortions reach a steady state and the far-field profile of the laser beam no longer changes. By means of a deformable mirror located after the vacuum compressor, we apply a static pre-compensation to correct those aberrations allowing us to demonstrate a dramatic improvement of the far-field profile at 100 Hz with the reduction of the residual wavefront distortions below λ/16 before focusing. The applied technique provides 100 Hz operation of the femtosecond laser chain with stable pulse characteristics, corresponding to peak intensity above 1019 W/cm2 and average power of 19 W on target, which enables the study of relativistic optics at high repetition rate using a moderate f-number focusing optics (f/4.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 10 February 2020

    In the original publication, we erroneously reported that the substrate of the diffraction gratings used in the experiments was made of low expansion glass (zerodur). In fact, the substrate of the diffraction gratings was made of Pyrex, which does not have the same thermomechanical properties as zerodur. This is an important correction to mention as the thermally induced wavefront distortions depend on the thermomechanical properties of the substrate.

References

  1. E. Esarey, C.B. Shroeder, W.P. Leemans, “Physics of laser driven plasma based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Article  ADS  Google Scholar 

  2. A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013)

    Article  ADS  Google Scholar 

  3. S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013)

    Article  ADS  Google Scholar 

  4. H. Fattahi et al., Third generation femtosecond technology. Optica 1(1), 45–63 (2014)

    Article  ADS  Google Scholar 

  5. W.S. Brocklesby, Progress in high average power ultrafast lasers. Eur. Phys. J. 224, 2529–2543 (2015)

    Google Scholar 

  6. F. Böhle, M. Kretschma, A. Jullien, T. Nagy, Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Las. Phys. Lett. 9, 095401 (2014)

    Article  ADS  Google Scholar 

  7. I. Matsushima, H. Yashiro, T. Tomie, 10 KHz 40W Ti:Sapphire regenerative amplifier. Opt. Lett. 31, 2066–2068 (2006)

    Article  ADS  Google Scholar 

  8. S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jojart, Z. Varallyay, E. Cormier, K. Osvay, A. Tünnermann, J. Limpert, Energetic sub-2-cycle laser with 216 W average power. Opt. Lett. 41(18), 4332–4335 (2016)

    Article  ADS  Google Scholar 

  9. G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, The future is fibre accelerators. Nat. Photon. 7, 258–261 (2013)

    Article  ADS  Google Scholar 

  10. S. Breitkopf, T. Eidam, A. Klenke, L. Von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, J. Limpert, A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities. Light Sci. Appl., 3, e211 (2014)

    Article  Google Scholar 

  11. M. Kienel, A. Klenke, T. Eidam, S. Haddrich, J. Limpert, A. Tünnermann, Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification. Opt. Lett. 39(4), 1049–1052 (2014)

    Article  ADS  Google Scholar 

  12. R. Budriunas, T. Stranislauskas, J. Adamonis, A. Aleknavicius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, A. Varanavicius, 53W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 KHz repetition rate. Opt. Exp. 25(5), 5797–5806 (2017)

    Article  ADS  Google Scholar 

  13. A. Vaupel, N. Bodnar, B. Webb, L. Shah, M. Richardson, Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification. Opt. Eng. 53(5), 051507 (2014)

    Article  ADS  Google Scholar 

  14. P. Sikocinski, O. Novak, M. Smrz, J. Pilar, V. Jambunathan, H. Jelinkova, A. Endo, A. Lucianetti, T. Mocek, Time-resolved measurement of thermally-induced aberrations in a cryogenically cooled Yb–YAG slab with a wavefront sensor. Appl. Phys. B 73, 122 (2016)

    Google Scholar 

  15. O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, T. Mocek, Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier. IEEE J. Quant. Electron. 49, 11 (2013)

    Article  Google Scholar 

  16. M. Chyla, S.S. Nagisetty, P. Severova, T. Miura, K. Mann, A. Endo, T. Mocek, Time-resolved deformation measurement of Yb:YAG thin disk using wavefront sensor. Proc. SPIE 9343, 93431E-1, (2015)

    Google Scholar 

  17. Y. Zhang, J. Wang, X. Lu, W. Huang, X. Li Research and control of thermal effect in a gas-cooled multislab Nd:glass laser amplifier. Proc. SPIE 9621, 962103-1, (2015)

    Google Scholar 

  18. C.G. Durfee, S. Backus, M.M. Murnane, H.C. Kapteyn, Design and implementation of a TW-class high average power laser system. IEEE J. Sel. Top. Quant. Electron. 4, 2 (1998)

    Article  Google Scholar 

  19. S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, K. Torizuka, Seven terawatt Ti:sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond X-ray generation. Appl. Phys. B 76, 497–503 (2003)

    Article  ADS  Google Scholar 

  20. R.S. Nagymihaly, H. Cao, D. Papp, G. Hajas, M. Kalashnikov, K. Osvay, V. Chvykov, Liquid-cooled Ti:Sapphire Thin disk amplifiers for high average power 100-TW systems. Opt. Exp. 25, 6664–6677 (2017)

    Article  ADS  Google Scholar 

  21. W. Koechner, Solid State Laser Engineering, 6th edn. Springer, New-York (2006)

    MATH  Google Scholar 

  22. Y. Ning, Q. Sun, H. Wang, W. Wu, S. Du, X. Xu, Thermal distortion real-time detection and correction of a high-power laser beam-splitter mirror based on double Shack–Hartmann wavefront sensors. Proc. SPIE 9513, 95130Y-1, (2015)

    Article  Google Scholar 

  23. S. Fourmaux, C. Serbanescu, L. Lecherbourg, S. Payeur, F. Martin, J.C. Kieffer, Investigation of the thermally-induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems. Opt. Exp. 17(1), 178–184 (2009)

    Article  ADS  Google Scholar 

  24. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H.C. Kapteyn, M.M. Murnane, High efficiency, single stage 7-kHz high-average-power ultrafast laser system. Opt. Lett. 26(7), 465–467 (2001)

    Article  ADS  Google Scholar 

  25. D.A. Alessi, P.A. Rosso, H.T. Nguyen, M.D. Aasen, J.A. Britten, C. Haefner, Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast laser. Opt. Exp. 24(26), 30015–30023 (2016)

    Article  ADS  Google Scholar 

  26. D.M. Gaudiosi, A.L. Lytle, P. Kohl, M.M. Murnane, H.C. Kapteyn, S. Backus, 11-W average power Ti:sapphire amplifier system using downchirped pulse amplification. Opt. Lett. 29(22), 2665–2667 (2004)

    Article  ADS  Google Scholar 

  27. J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection. Opt. Commun. 148(1–3), 70–74 (1998)

    Article  ADS  Google Scholar 

  28. G. Chériaux, P. Rousseau, F. Salin, J.P. Chambaret, B. Walker, L.F. Dimauro, Aberration-free stretcher design for ultrashort-pulse amplification. Opt. Lett. 21(6), 414–416 (1996)

    Article  ADS  Google Scholar 

  29. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and sha**. Opt. Lett. 25, 575–578 (2000)

    Article  ADS  Google Scholar 

  30. T. Oksenhendler, D. Kaplan, P. Tournois, G.M. Greetham, F. Estable, Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifier. Appl. Phys. B 83, 491–495 (2006)

    Article  ADS  Google Scholar 

  31. M. Pittman, S. Ferré, J.P. Rousseau, L. Notebaert, J.P. Chambaret, G. Chériaux, Design and characterization of a near diffraction-limited fs 100 TW 10 Hz high intensity laser system. Appl. Phys. B 74, 529–535 (2002). https://doi.org/10.1007/s00340-010-3916-y

    Article  ADS  Google Scholar 

  32. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Gabrielle, R. Herzog, O. Gobert, D. Kaplan, Self-referenced spectral interferometry. Appl. Phys. B 99, 7–12 (2010). https://doi.org/10.1007/s00340-010-3916-y

    Article  ADS  Google Scholar 

  33. Y. Azamoum, V. Tcheremiskine, R. Clady, A. Ferré, L. Charmasson, O. Uteza, M. Sentis, Impact of the pulse contrast ratio on molybdenum Kα generation by ultrahigh intensity femtosecond laser solid interaction. Sci. Rep. 8, 4119 (2018)

    Article  ADS  Google Scholar 

  34. S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, J.C. Kieffer, Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. Opt. Exp. 19(9), 8486–8497 (2011)

    Article  ADS  Google Scholar 

  35. N.V. Didenko, A.V. Konyashchenko, A.P. Lutsenko, S.Y. Tenyakov, Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses. Opt. Exp. 16, 53178–53190 (2008)

    Article  ADS  Google Scholar 

  36. D.N. Schimpf, E. Seise, J. Limpert, A. Tünnermann, The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems. Opt. Exp. 16(14), 10664–10674 (2008)

    Article  ADS  Google Scholar 

  37. G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J.C. Gauthier, J.P. Geindre, T. Wittmann, Complete characterization of a plasma mirror for the production of high contrast ultraintense laser pulses. Phys. Rev. E 69, 026402 (2004)

    Article  ADS  Google Scholar 

  38. N. Lefaudeux, E. Lavergne, S. Monchoce, X. Levecq, Diffraction limited focal spot in the interaction chamber using phase retrieval adaptive optics. Proc SPIE, 8960, 89601R (2014)

    Article  ADS  Google Scholar 

  39. M. Born, E. Wolf, Principles of Optics, Sec. 9.2 (Pergamon, New York, 1975)

    Google Scholar 

  40. J.Y. Wang, D.E. Silva, Wave-front interpretation with Zernike polynomials. Appl. Opt. 19(9), 1510 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from LASERLAB-EUROPE (grant agreement no. 654148, European Union’s Horizon 2020 research and innovation programme). The financial support of European Community, Ministry of Research and High Education, Region Provence-Alpes-Côte d’Azur, Department of Bouches-du-Rhône, City of Marseille, CNRS, and Aix-Marseille University is gratefully acknowledged for funding ASUR platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Clady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clady, R., Azamoum, Y., Charmasson, L. et al. 22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz. Appl. Phys. B 124, 89 (2018). https://doi.org/10.1007/s00340-018-6958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6958-1

Navigation