Log in

Scattering-induced dephasing of many-particle transitions in semiconductor quantum dots

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study the homogeneous linewidth of transitions between many-particle states in semiconductor quantum dots due to scattering processes. Carrier–density-dependent scattering rates due to carrier–carrier Coulomb interaction and carrier–LO-phonon interaction are obtained on a non-perturbative level and connected to a von Neumann–Lindblad equation for the quantum-dot many-particle configurations, allowing to identify the dephasing of transitions between many-particle states. For different dot geometries, we discuss implications of energetic quantum-dot wetting-layer separation on Coulomb and LO-phonon contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204–4207 (1999)

    Article  ADS  Google Scholar 

  2. M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, A. Imamoglu, Quantum-dot spin-state preparation with near-unity fidelity. Science 312(5773), 551–553 (2006)

    Article  ADS  Google Scholar 

  3. A. Greilich, S.E. Economou, S. Spatzek, D.R. Yakovlev, D. Reuter, A.D. Wieck, T.L. Reinecke, M. Bayer, Ultrafast optical rotations of electron spins in quantum dots. Nat. Phys. 5(4), 262–266 (2009)

    Article  Google Scholar 

  4. K. Müller, T. Kaldewey, R. Ripszam, J.S. Wildmann, A. Bechtold, M. Bichler, G. Koblmüller, G. Abstreiter, J.J. Finley, All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current. Sci. Rep. 3, 1906 (2013)

    Google Scholar 

  5. S. Buckley, K. Rivoire, J. Vučković, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75(12), 126503 (2012)

    Article  ADS  Google Scholar 

  6. C. Gies, F. Jahnke, W.W. Chow, Photon antibunching from few quantum dots in a cavity. Phys. Rev. A 91(6), 061804 (2015)

    Article  ADS  Google Scholar 

  7. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290, 2282 (2000)

    Article  ADS  Google Scholar 

  8. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96(13), 130501 (2006)

    Article  ADS  Google Scholar 

  9. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, Ultrabright source of entangled photon pairs. Nature 466(7303), 217–220 (2010)

    Article  ADS  Google Scholar 

  10. I.A. Akimov, J.T. Andrews, F. Henneberger, Stimulated emission from the biexciton in a single self-assembled II–VI quantum dot. Phys. Rev. Lett. 96(6), 067401 (2006)

    Article  ADS  Google Scholar 

  11. H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G.S. Solomon, G. Weihs, Time-bin entangled photons from a quantum dot. Nat. Commun. 5, 4251 (2014)

    Article  ADS  Google Scholar 

  12. S. Schumacher, J. Förstner, A. Zrenner, M. Florian, C. Gies, P. Gartner, F. Jahnke, Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting. Opt. Express 20(5), 5335–5342 (2012)

    Article  ADS  Google Scholar 

  13. S.M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, P. Michler, Spectroscopy of the D 1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot. Phys. Rev. B 90(12), 125310 (2014)

    Article  ADS  Google Scholar 

  14. A. Carmele, F. Milde, M.-R. Dachner, M. Bagheri Harouni, R. Roknizadeh, M. Richter, A. Knorr, Formation dynamics of an entangled photon pair: a temperature-dependent analysis. Phys. Rev. B 81(19), 195319 (2010)

    Article  ADS  Google Scholar 

  15. G. Pfanner, M. Seliger, U. Hohenester, Entangled photon sources based on semiconductor quantum dots: the role of pure dephasing. Phys. Rev. B 78(19), 195410 (2008)

    Article  ADS  Google Scholar 

  16. D. Martín-Cano, A. González-Tudela, L. Martín-Moreno, F.J. García-Vidal, C. Tejedor, E. Moreno, Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Phys. Rev. B 84(23), 235306 (2011)

    Article  ADS  Google Scholar 

  17. A. Auffèves, J.-M. Gérard, J.-P. Poizat, Pure emitter dephasing: a resource for advanced solid-state single-photon sources. Phys. Rev. A 79(5), 053838 (2009)

    Article  ADS  Google Scholar 

  18. S. Ates, S.M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, P. Michler, Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nat. Photonics 3(12), 724–728 (2009)

    Article  ADS  Google Scholar 

  19. M. Florian, P. Gartner, C. Gies, F. Jahnke, Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers. New J. Phys. 15(3), 035019 (2013)

    Article  ADS  Google Scholar 

  20. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, J.J. Finley, Phonon-assisted transitions from quantum dot excitons to cavity photons. Phys. Rev. B 80(20), 201311 (2009)

    Article  ADS  Google Scholar 

  21. A. Naesby, T. Suhr, P.T. Kristensen, J. Mørk, Influence of pure dephasing on emission spectra from single photon sources. Phys. Rev. A 78, 045802 (2008)

    Article  ADS  Google Scholar 

  22. G. Tarel, V. Savona, Emission spectrum of a quantum dot embedded in a nanocavity. Phys. Status Solidi C 6(4), 902–905 (2009)

    Article  ADS  Google Scholar 

  23. U. Bockelmann, T. Egeler, Electron relaxation in quantum dots by means of auger processes. Phys. Rev. B 46, 15574 (1992)

    Article  ADS  Google Scholar 

  24. R. Ferreira, G. Bastard, Phonon-assisted capture and intradot auger relaxation in quantum dots. Appl. Phys. Lett. 74, 2818 (1999)

    Article  ADS  Google Scholar 

  25. K. Lüdge, M.J.P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, Turn-on dynamics and modulation response in semiconductor quantum dot lasers. Phys. Rev. B 78(3), 035316 (2008)

    Article  ADS  Google Scholar 

  26. T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69(23), 235314 (2004)

    Article  ADS  Google Scholar 

  27. J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation. Phys. Rev. B 71(12), 125327 (2005)

    Article  ADS  Google Scholar 

  28. H.-P. Breuer, The theory of open quantum systems (Oxford University Press, Oxford, 2007)

    Book  MATH  Google Scholar 

  29. A.G. Redfield. The theory of relaxation processes. Adv. Magn. Opt. Reson. 1(1), 1–32 (1965)

    Article  MathSciNet  Google Scholar 

  30. A. Steinhoff, H. Kurtze, P. Gartner, M. Florian, D. Reuter, A.D. Wieck, M. Bayer, F. Jahnke, Combined influence of Coulomb interaction and polarons on the carrier dynamics in InGaAs quantum dots. Phys. Rev. B 88(20), 205309 (2013)

    Article  ADS  Google Scholar 

  31. P. Michler, Single quantum dots—fundamentals, applications and new concepts (Springer, Berlin, 2003)

    Google Scholar 

  32. L. Besombes, K. Kheng, L. Marsal, H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63(15), 155307 (2001)

    Article  ADS  Google Scholar 

  33. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett 87(15), 157401 (2001)

    Article  ADS  Google Scholar 

  34. P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, A.D. Wieck, Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement. Phys. Rev. B 71(11), 115328 (2005)

    Article  ADS  Google Scholar 

  35. B. Krummheuer, V.M. Axt, T. Kuhn, Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots. Phys. Rev. B 65(19), 195313 (2002)

    Article  ADS  Google Scholar 

  36. E. Pazy, Calculation of pure dephasing for excitons in quantum dots. Semicond. Sci. Technol. 17(11), 1172 (2002)

    Article  ADS  Google Scholar 

  37. S. Schmitt-Rink, D.A.B. Miller, D.S. Chemla, Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys. Rev. B 35(15), 8113–8125 (1987)

    Article  ADS  Google Scholar 

  38. T. Takagahara, Theory of exciton dephasing in semiconductor quantum dots. Phys. Rev. B 60(4), 2638–2652 (1999)

    Article  ADS  Google Scholar 

  39. R. Zimmermann, E. Runge. Dephasing in quantum dots via electron–phonon interaction. In: Proceedings of 26th ICPS (Edinburgh, 2002)

  40. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Relaxation and dephasing of multiexcitons in semiconductor quantum dots. Phys. Rev. Lett. 89(18), 187401 (2002)

    Article  ADS  Google Scholar 

  41. H. Gotoh, H. Kamada, T. Saitoh, H. Ando, J. Temmyo, Effects of biexcitons on exciton decoherence processes in ln x Ga1−x As quantum dots. Phys. Rev. B 69(15), 155328 (2004)

    Article  ADS  Google Scholar 

  42. G. Moody, R. Singh, H. Li, I.A. Akimov, M. Bayer, D. Reuter, A.D. Wieck, S.T. Cundiff, Fifth-order nonlinear optical response of excitonic states in an InAs quantum dot ensemble measured with two-dimensional spectroscopy. Phys. Rev. B 87(4), 045313 (2013)

    Article  ADS  Google Scholar 

  43. N. Baer, P. Gartner, F. Jahnke, Coulomb effects in semiconductor quantum dots. Eur. Phys. J. B 42, 231 (2004)

    Article  ADS  Google Scholar 

  44. A. Steinhoff, P. Gartner, M. Florian, F. Jahnke, Treatment of carrier scattering in quantum dots beyond the Boltzmann equation. Phys. Rev. B 85(20), 205144 (2012)

    Article  ADS  Google Scholar 

  45. A. Wojs, P. Hawrylak, S. Fafard, L. Jacak, Electronic structure and magneto-optics of self-assembled quantum dots. Phys. Rev. B 54(8), 5604 (1996)

    Article  ADS  Google Scholar 

  46. H.C. Schneider, W.W. Chow, S.W. Koch, Many-body effects in the gain spectra of highly excited quantum dot lasers. Phys. Rev. B 64, 115315 (2001)

    Article  ADS  Google Scholar 

  47. A.E. Muljarov, R. Zimmermann, Dephasing in quantum dots quadratic coupling to acoustic phonons. Phys. Rev. Lett 93, 237401 (2004)

    Article  ADS  Google Scholar 

  48. C. Gies, M. Florian, P. Gartner, F. Jahnke, The single quantum dot-laser: lasing and strong coupling in the high-excitation regime. Opt. Express 19(15), 14370–14388 (2011)

    Article  ADS  Google Scholar 

  49. F.P. Laussy, E. del Valle, C. Tejedor, Strong coupling of quantum dots in microcavities. Phys. Rev. Lett. 101, 083601 (2008)

    Article  ADS  Google Scholar 

  50. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V.D. Kulakovskii, A. Forchel, Single quantum dot controlled lasing effects in high-q micropillar cavities. Opt. Express 16(7), 4848–4857 (2008)

    Article  ADS  Google Scholar 

  51. S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, D. Bouwmeester, Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006)

    Article  ADS  Google Scholar 

  52. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat. Phys. 6, 279–283 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the BMBF Q.com project and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Florian.

Additional information

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florian, M., Steinhoff, A., Gies, C. et al. Scattering-induced dephasing of many-particle transitions in semiconductor quantum dots. Appl. Phys. B 122, 6 (2016). https://doi.org/10.1007/s00340-015-6296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6296-5

Keywords

Navigation