Log in

Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

InAs quantum dots grown on a GaAs substrate have been one of the most successful semiconductor material systems to demonstrate single-photon-based quantum optical phenomena. In this context, we present the feasibility to extend the low-temperature photoluminescence emission range of In(Ga)As/GaAs quantum dots grown by metal-organic vapor-phase epitaxy from the typical window between 880 and 960 nm to wavelengths above 1.3 μm. A low quantum dot density can be obtained throughout this range, enabling the demonstration of single- and cascaded photon emission. We further analyze polarization-resolved micro-photoluminescence from a large number of individual quantum dots with respect to anisotropy and size of the underlying fine-structure splittings in the emission spectra. For samples with elevated emission wavelengths, we observe an increasing tendency of the emitted photons to be polarized along the main crystal axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Michler (ed.), Single Quantum Dots, Topics in Applied Physics, vol. 90, 1st edn. (Springer, Berlin Heidelberg, 2003)

  2. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, Science 290(5500), 2282 (2000)

    Article  ADS  Google Scholar 

  3. C. Santori, D. Fattal, J. Vucković, G.S. Solomon, Y. Yamamoto, Nature 419, 594 (2002)

    Article  ADS  Google Scholar 

  4. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. Gérard, I. Abram, Phys. Rev. Lett. 87, 183601 (2001)

    Article  ADS  Google Scholar 

  5. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  Google Scholar 

  6. R.J. Young, R.M. Stevenson, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, N. J. Phys. 8(29), 2 (2006)

    Google Scholar 

  7. R. Hafenbrak, S.M. Ulrich, P. Michler, L. Wang, A. Rastelli, O.G. Schmidt, N. J. Phys. 9(9), 315 (2007)

    Article  Google Scholar 

  8. H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G.S. Solomon, G. Weihs, Nat. Commun. 5, 4251 (2014)

    Article  ADS  Google Scholar 

  9. K. De Greve, L. Yu, P.L. McMahon, J.S. Pelc, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, Nature 491(7424), 421 (2012)

    Article  ADS  Google Scholar 

  10. W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, Nature 491(7424), 426 (2012)

    Article  ADS  Google Scholar 

  11. E. Murray, D.P. Ellis, T. Meany, F.F. Flother, J.P. Lee, J.P. Griffiths, G.A.C. Jones, I. Farrer, D.A. Ritchie, A.J. Bennet, A.J. Shields, Appl. Phys. Lett. 107(17), 171108 (2015). http://dx.doi.org/10.1063/1.4935029

  12. E.F. Schubert, T. Gessmann, J.K. Kim, Light Emitting Diodes (Wiley, New York, 2005)

    Google Scholar 

  13. M.B. Ward, O.Z. Karimov, D.C. Unitt, Z.L. Yuan, P. See, D.G. Gevaux, A.J. Shields, P. Atkinson, D.A. Ritchie, Appl. Phys. Lett. 86(20), 201111 (2005)

    Article  ADS  Google Scholar 

  14. B. Alloing, C. Zinoni, V. Zwiller, L.H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, E. Kapon, Appl. Phys. Lett. 86(10), 101908 (2005)

    Article  ADS  Google Scholar 

  15. M.T. Rakher, L. Ma, O. Slattery, X. Tang, K. Srinivasan, Nat. Photon. 4(11), 786 (2010)

    Article  ADS  Google Scholar 

  16. M.B. Ward, M.C. Dean, R.M. Stevenson, A.J. Bennett, D.J.P. Ellis, K. Cooper, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Nat. Commun. 5, 3316 (2014)

    Article  ADS  Google Scholar 

  17. N.I. Cade, H. Gotoh, H. Kamada, H. Nakano, H. Okamoto, Phys. Rev. B 73, 115322 (2006)

    Article  ADS  Google Scholar 

  18. T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, O. Mikami, Appl. Phys. Lett. 92(8), 81906 (2008)

    Article  Google Scholar 

  19. D. Guimard, H. Lee, M. Nishioka, Y. Arakawa, Appl. Phys. Lett. 92(2008), 163101 (2008)

    Article  ADS  Google Scholar 

  20. V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, A.Y. Egorov, A.V. Lunev, B.V. Volovik, I.L. Krestnikov, Y.G. Musikhin, Na Bert, P.S. Kopev, Z.I. Alferov, N.N. Ledentsov, D. Bimberg, Appl. Phys. Lett. 74(19), 2815 (1999)

    Article  ADS  Google Scholar 

  21. B. Lambert, A. Corre, V. Drouot, H. L’Haridon, S. Loualiche, Semicond. Sci. Technol. 13(1), 143 (1998)

    Article  ADS  Google Scholar 

  22. A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, V. Avanzini, J. Cryst. Growth 175–176 Part 2, 771 (1997)

    Article  Google Scholar 

  23. E. Goldmann, M. Paul, F.F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, F. Jahnke, Appl. Phys. Lett. 105, 152102 (2014)

    Article  ADS  Google Scholar 

  24. D. Richter, R. Hafenbrak, K.D. Jöns, W.M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, P. Michler, Nanotechnology 21(12), 125606 (2010)

    Article  ADS  Google Scholar 

  25. M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, P. Michler, Appl. Phys. Lett. 106(12), 122105 (2015)

    Article  ADS  Google Scholar 

  26. K. Kowalik, O. Krebs, A. Lematre, S. Laurent, P. Senellart, P. Voisin, J.A. Gaj, Appl. Phys. Lett. 86(4), 041907 (2005)

    Article  ADS  Google Scholar 

  27. A. Schliwa, M. Winkelnkemper, D. Bimberg, Phys. Rev. B 79, 075443 (2009)

    Article  ADS  Google Scholar 

  28. M. Wimmer, S.V. Nair, J. Shumway, Phys. Rev. B 73, 165305 (2005)

    Article  ADS  Google Scholar 

  29. R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J.D. Plumhof, J. van den Brink, A. Rastelli, O.G. Schmidt, Phys. Rev. Lett. 109, 147401 (2012)

    Article  ADS  Google Scholar 

  30. J. Zhang, J.S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber, A. Rastelli, O.G. Schmidt, Nat. Commun. 6, 10067 (2015). http://dx.doi.org/10.1038/ncomms10067

Download references

Acknowledgments

The authors gratefully acknowledge funding by the Federal Ministry of Education and Research, in particular for the projects Q.com-H (16KIS0115) and QuaHL-Rep (01BQ1041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kettler.

Additional information

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Jan Kettler and Matthias Paul contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kettler, J., Paul, M., Olbrich, F. et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl. Phys. B 122, 48 (2016). https://doi.org/10.1007/s00340-015-6280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6280-0

Keywords

Navigation