Log in

Synthesis and characterization of aligned ZnO/MgO core–shell nanorod arrays on ITO substrate

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

ZnO/MgO core–shell nanorod arrays were synthesized successfully by the hydrothermal growth method. Photoluminescence (PL) emission from the nanorods showed remarkable enhancement after the growth of the MgO layer. The ZnO/MgO core–shell nanorods are type-I heterostructures, the electrons and holes of which are both confined in the core of the nanorods, as a result, leading to the increase of the photoluminescence intensity in this system. In addition, another reason for the enhancement of PL emission was the deposition of MgO shell suppression of surface defects. In addition, the activation energy (E a) of 63 meV in the ZnO/MgO core–shell nanorods was obtained from temperature-dependent PL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Thin Solid Films 496, 26 (2006)

    Article  ADS  Google Scholar 

  2. Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, C.J. Youn, Appl. Phys. Lett. 88, 241108 (2006)

    Article  ADS  Google Scholar 

  3. B. Sun, H. Sirringhaus, Nano Lett. 5, 2408 (2005)

    Article  ADS  Google Scholar 

  4. Y. Liu, Y. Chu, L.L. Li, L.H. Dong, Y.J. Zhuo, Chem. Eur. J. 13, 6667 (2007)

    Article  Google Scholar 

  5. H.S. Chung, C.S.H. Chen, R.A. Kremer, J.R. Boulton, G.W. Burdette, Energy Fuels 13, 641 (1999)

    Article  Google Scholar 

  6. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  7. Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17, 1001 (2005)

    Article  Google Scholar 

  8. L. Schmidt-Mende, J.L. MacManus-Driscoll, Today 10, 40 (2007)

    Google Scholar 

  9. S. Kim, C.O. Kim, S.W. Hwang, S.H. Choi, Appl. Phys. Lett. 92, 243108 (2008)

    Article  ADS  Google Scholar 

  10. S.S. Lee, K.T. Byun, J.P. Park, S.K. Kim, J.C. Lee, S.K. Chang, H.Y. Kwak, I.W. Shim, Chem. Eng. J. 139, 194 (2008)

    Article  Google Scholar 

  11. J.C. Jiang, E.I. Meletis, Z. Yuan, C.L. Chen, Appl. Phys. Lett. 90, 051904 (2007)

    Article  ADS  Google Scholar 

  12. G.W. Wagner, P.W. Bartram, O. Kopper, K.J. Klabunde, J. Phys. Chem. B 103, 3225 (1999)

    Article  Google Scholar 

  13. O.A. Boateng, S.K. Aska Kumarao, M. Okuya, K. Murakami, A. Konno, K. Tennakone, J. Appl. Phys. 44, 731 (2005)

    Article  Google Scholar 

  14. J.H. Yang, J.H. Lang, L.L. Yang, Y.J. Zhang, D.D. Wang, H.G. Fan, H.L. Liu, Y.X. Wang, M. Gao, J. Alloys Compd. 450, 521 (2008)

    Article  Google Scholar 

  15. T.C. Damen, S.P.S. Porto, B. Tell, Phys. Re. 142, 570 (1966)

    Article  ADS  Google Scholar 

  16. A. Kaschner, U. Haboeck, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Appl. Phys. Lett. 80, 1909 (2002)

    Article  ADS  Google Scholar 

  17. X.H. Wang, D.X. Zhao, Y.C. Liu, J.Y. Zhang, Y.M. Lu, X.W. Fan, J. Cryst. Growth 263, 316 (2004)

    Article  ADS  Google Scholar 

  18. K. Vandheusen, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.N. Gnage, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  19. H.Y. Yang, S.F. Yu, G.P. Li, T. Wu, Opt. Lett. 18, 13647 (2010)

    Google Scholar 

  20. J.H. Li, D.X. Zhao, X.Q. Meng, Z.Z. Zhang, J.Y. Zhang, D.Z. Shen, Y.M. Lu, X.W. Fan, J. Phys. Chem. B 110, 14685 (2006)

    Article  Google Scholar 

  21. V.A. Fonoberov, K.A. Alim, A.A. Balandin, Phys. Rev. B 73, 165317 (2006)

    Article  ADS  Google Scholar 

  22. J. Li, L.W. Wang, Chem. Mater. 16, 4012 (2004)

    Article  Google Scholar 

  23. S. Kim, B. Fisher, H.J. Eiser, M.J. Bawendi, Am. Chem. Soc. 125, 11466 (2003)

    Article  Google Scholar 

  24. S. Kumar, M. Jones, S.S. Lo, G.D. Scholes, Small 3, 1633 (2007)

    Article  Google Scholar 

  25. S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretaik, K.R. Zavadil, W.O. Wallace, D. Werder, V.I. Klimov, J. Am. Chem. Soc. 129, 11708 (2007)

    Article  Google Scholar 

  26. X.Q. Meng, H.W. Peng, Y.Q. Gai, J.B. Li, J. Phys. Chem. C 114, 1467 (2010)

    Article  Google Scholar 

  27. L.L. Yang, Q.X. Zhao, M.Q. Israr, J.R. Sadaf, M. Willander, G. Pozina, J.H. Yang, J. Appl. Phys. 108, 103513 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by Program for the National Natural Science Foundation of China (Grant Nos. 61008051, 61178074), Program for the development of Science and Technology of Jilin province (Item Nos. 201215225, 201105084, 201205078 and 201215223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M., Yang, J.H., Yang, L.L. et al. Synthesis and characterization of aligned ZnO/MgO core–shell nanorod arrays on ITO substrate. Appl. Phys. B 112, 539–545 (2013). https://doi.org/10.1007/s00340-013-5436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5436-z

Keywords

Navigation