Log in

Architecture of a blue high contrast multiterawatt ultrashort laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The strategy used to develop an innovative high contrast multiterawatt femtosecond laser chain based on a hybrid (solid/gas) technology is reported. The laser system includes a Ti:sapphire oscillator generating 50 fs pulses at 950 nm, an optical parametric chirped pulse amplification stage, a second harmonic frequency converter for pulse temporal cleaning, and a final photolytical XeF(C–A) excimer amplifier for direct high peak-power amplification of ultrashort laser pulses in the blue (475 nm) spectral region. Several important issues concerning the design of the laser front-end, the energy extraction and beam phase control in the high peak-power XeF(C–A) amplifier are theoretically addressed. A detailed description of the XeF(C–A) amplifier and careful measurements of its energetic, optical and pum** characteristics are also given, together with the first pilot amplification experiments in the low density XeF(C–A) medium to assert the significance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahk SW, Rousseau P, Planchon TA, Chvykov V, Kalintchenko G, Maksimchuk A, Mourou GA, Yanovsky V (2004) Opt. Lett. 29:2837

    Article  ADS  Google Scholar 

  2. Aoyama M, Yamakawa K, Akahane Y, Ma J, Inoue N, Ueda H, Kiriyama H (2003) Opt. Lett. 28:1594

    Article  ADS  Google Scholar 

  3. Backus S, Durfee III CG, Murnane MM, Kapteyn HC (1998) Rev. Sci. Instrum. 69:1207

    Article  ADS  Google Scholar 

  4. Itatani J, Faure J, Nantel M, Mourou G, Watanabe S (1998) Opt. Commun. 148:70

    Article  ADS  Google Scholar 

  5. Renault A, Augé-Rochereau F, Planchon T, D’Oliveira P, Auguste T, Chériaux G, Chambaret JP (2005) Opt. Commun. 248:535

    Article  ADS  Google Scholar 

  6. Begishev IA, Kalashnikov M, Karpov V, Nickles P, Schönnagel H, Kulagin IA, Usmanov T (2004) J. Opt. Soc. Am. B 21:318

    Article  ADS  Google Scholar 

  7. Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau JP, Chambaret JP, Augé-Rochereau F, Chériaux G, Etchepare J (2005) Opt. Lett. 30:920

    Article  ADS  Google Scholar 

  8. Nantel M, Itatani J, Tien AC, Faure J, Kaplan D, Bauvier M, Buma T, Van Rompay P, Nee J, Pronko PP, Umstadter D, Mourou GA (1998) IEEE J. Quantum Electron. QE-4:449

    Google Scholar 

  9. Doumy G, Quéré F, Gobert O, Perdrix M, Martin P, Audebert P, Gauthier JC, Geindre JP, Wittmann T (2004) Phys. Rev. E 69:026402

    Article  ADS  Google Scholar 

  10. Ross IN, Matousek P, New GHC, Osvay K (2002) J. Opt. Soc. Am. B 19:2945

    Article  ADS  Google Scholar 

  11. Mikheev LD (1992) Laser Part. Beams 10:473

    Article  ADS  Google Scholar 

  12. Sharp TE, Hofmann T, Dane CB, Wilson WL, Tittel FK, Wisoff PJ (1990) Opt. Lett. 15:1461

    ADS  Google Scholar 

  13. Hofmann T, Sharp TE, Dane CB, Wisoff PJ, Wilson Jr WL, Tittel FK, Sabo G (1992) IEEE J. Quantum Electron. QE-28:1366

    Article  ADS  Google Scholar 

  14. Basov NG, Zuev VS, Kanaev AV, Mikheev LD, Stavrovskii DB (1979) Sov. J. Quantum Electron. 9:629

    Article  Google Scholar 

  15. Tcheremiskine VI, Sentis ML, Mikheev LD (2002) Appl. Phys. Lett. 81:403

    Article  ADS  Google Scholar 

  16. Mikheev L, Levtchenko K, Mamaev S, Mislavskii V, Moskalev T, Sentis M, Shirokikh A, Tcheremiskine V, Yalovoi V, “Direct amplification of frequency doubled femtosecond pulses from Ti,sa laser in photochemically driven XeF(C–A) active media”, in High-Power Laser Ablation V, Claude Phipps R (ed), Proc. SPIE Vol. 5448 (SPIE, Bellingham, WA 2004) 384–392

  17. Zuev VS, Kashnikov GN, Mamaev SB (1992) Sov. J. Quantum Electron. 22:973

    Article  Google Scholar 

  18. Li Yu, Liu JR, Ma LY, Yi AP, Huang C, An XX, Zhang YS, “Optically pum** XeF(C–A) laser and its properties” in CLEO/Europe - EQEC 2005, 12–17 June 2005, Munich, paper CG-6-TUE, Advance program p 77

  19. Koechner W (1999) Solid-State Laser Eng, 5th edn. Springer, Berlin Heidelberg

    Google Scholar 

  20. Strickland D, Mourou G (1985) Opt. Commun. 56:219

    Article  ADS  Google Scholar 

  21. Rosen DI, Weyl G (1987) J Phys D Appl Phys 20:1264

    Article  ADS  Google Scholar 

  22. Ireland C, Grey Morgan C (1974) J Phys D Appl Phys 7:L87

    Article  ADS  Google Scholar 

  23. Milonni PW, Gibson RB, Taylor AJ (1988) J. Opt. Soc. Am. B 5:1360

    ADS  Google Scholar 

  24. Obara M, Kannari F (1991) Rare gas-halide lasers, In: Encyclopedia of Lasers and Optical Technology. Academic Press, San Diego

    Google Scholar 

  25. Tcheremiskine VI, Uteza OP, Sentis ML, Mikheev LD (2005) Rev. Sci. Instrum., accepted for publication

  26. Zuev VS, Mikheev LD (1991) Photochemical Lasers. Harwood Academic, Philadelphia

  27. Tcheremiskine VI, Sentis ML, Sabonnadiere MP, Mikheev LD (2002) Surf. Rev. Lett. 9:645

    Article  Google Scholar 

  28. Beverly III RE (1986) J. Appl. Phys. 60:104

    Article  ADS  Google Scholar 

  29. Mikheev LD, Tcheremiskine VI, Sabonnadiere MP, Sentis ML, Malinowski GY, Delaporte PC, ‘Modeling of photolytically excited laser mediums pumped by plan multi-channel sliding discharges’, in Proc. of XXIII International Int. Conf. Phenomena in Ionized Gases (ICPIG, Toulouse, France), 17–22 July 1997, I-48–I-49

  30. Fulghum SF, Trainor DW, Appel GH (1989) IEEE J. Quantum Electron. QE-25:955

    Article  ADS  Google Scholar 

  31. Reiching M, Sils J, Johansen H, Matthias E (1999) Appl. Phys. A 69:S743

    Article  ADS  Google Scholar 

  32. See for instance Lenzner M, Schnürer M, Spielmann C, Krausz F, ‘Intense sub-10-fs laser pulses, pushing the frontiers of nonlinear optics’ in Femtosecond Technology, eds. Kamiya T, Saito F, Wada O, Yajima H, (Springer, Berlin 1999), 245–257, and references therein

  33. Sutherland RL (1996) Handbook of Nonlinear Optics. Dekker, New York

    Google Scholar 

  34. Siegmann AE (1986) Lasers. University Science Books, Mill Valley, CA

    Google Scholar 

  35. Kannari F (1992) Jpn. J. Appl. Phys. 31:2109

    Article  ADS  Google Scholar 

  36. Boyd RW (1992) Nonlinear Optics. Academic Press, San Diego

    Google Scholar 

  37. Ross IN, Matousek P, Towrie M, Langley AJ, Collier JL (1997) Opt. Commun. 144:125

    Article  ADS  Google Scholar 

  38. Uteza O, Tcheremiskine V, Clady R, Coustillier G, Gastaud M, Gueguen S, Sentis M, Spiga P, Mikheev LD, “Prospects for ultrashort hybrid solid-gas high contrast multiterawatt laser in the blue-green region”, in High Power Laser Ablation V, Claude Phipps R (ed), Proc. SPIE 5448 (SPIE, Bellingham, WA 2004), 1078–1089

  39. Chériaux G, Rousseau P, Salin F, Chambaret JP, Walker B, Dimauro LF (1996) Opt. Lett. 21:414

    ADS  Google Scholar 

  40. Treacy E (1969) IEEE J. Quantum Electron. QE-5:454

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Uteza.

Additional information

PACS

42.60.By; 42.55.Lt; 42.65.Yj

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clady, R., Coustillier, G., Gastaud, M. et al. Architecture of a blue high contrast multiterawatt ultrashort laser. Appl. Phys. B 82, 347–358 (2006). https://doi.org/10.1007/s00340-005-2081-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2081-1

Keywords

Navigation