Log in

Theory of two-photon photothermal deflection spectroscopy in stationary and flowing media for arbitrary optical pulse length

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A general theory of pulsed two-photon photothermal deflection spectroscopy (PTDS) is presented. We find that there are significant enough differences in the amplitude and temporal evolution of PTDS signals between the results of the single- and two-photon theories that if one tries to interpret two-photon data with single-photon theory, the extracted values may be considerably in error. Our theory is sufficiently general that it incorporates both stationary and flowing media and considers optical pulses of arbitrary length. Moreover, the temporal profile of the optical pulse is explicitly taken into account. The two-photon absorption coefficient is explicitly expressed in terms of oscillator strengths and Clebsch–Gordan coefficients, and the Doppler width for both co-propagating and counter-propagating beams is taken into account. Although the theory is primarily developed for atomic and molecular vapors, it can easily be adapted for condensed matter by expressing the absorption coefficient in terms of the properties of the liquid or solid under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, Proc. 12th Int. Conf. Photoacoustic and Photothermal Phenomena [Rev. Sci. Instrum. Part II 74(1) (2003)]

  2. See, for example, R. Gupta: in Photothermal Investigations of Solids and Fluids, ed. by J.A. Sell (Academic, New York 1989) Chap. 3

  3. Y. Li, R. Gupta: Appl. Opt. 42, 2226 (2003)

    Google Scholar 

  4. Y. Li, R. Gupta: Appl. Phys. B 75, 903 (2002)

    Article  Google Scholar 

  5. See, for example, R. Gupta: in Proc. 11th Int. Symp. Laser-Aided Plasma Diagnostics, Les Houches, France, 2003 (unpublished)

  6. A.J. Twarowski, D.S. Kliger: Chem. Phys. 20, 259 (1977)

    Article  Google Scholar 

  7. H.L. Fang, T.L. Gustafson, R.L. Swofford: J. Chem. Phys. 78, 1663 (1983)

    Article  Google Scholar 

  8. A. Kurian, S.T. Lee, K.P. Unnikrishnan, D.S. George, V.P.N. Nampoori, C.P.G. Vallabhan: J. Nonlinear Opt. Phys. Mater. 12, 75 (2003)

    Article  Google Scholar 

  9. W.T. White III, M.A. Henesian, M.J. Weber: J. Opt. Soc. Am. B 2, 1402 (1985)

    Google Scholar 

  10. C. Halvorson, A.J. Heeger: Chem. Phys. Lett. 216, 488 (1993)

    Article  Google Scholar 

  11. Y. Han, J.S. Rosenshein, Z.L. Wu, W. Ye, M. Thomsen, Q. Zhao: Opt. Eng. 40, 303 (2001)

    Article  Google Scholar 

  12. B.C. Li, S. Martin, E. Welsch: in Laser-Induced Damage in Optical Materials: 2000, ed. by G.J. Exarhos, A.J. Guenther, M.R. Kozlowski, K.L. Lewis, M.J. Soileau (The International Society of Optical Engineering, Bellingham, WA, USA 2001) [Proc. SPIE 4347, 82 (2001)]

  13. A.J. Twarowski, D.S. Kliger: Chem. Phys. 20, 253 (1977)

    Article  Google Scholar 

  14. K. Kamada, K. Matsunaga, A. Yoshino, K. Ohta: J. Opt. Soc. Am. B 20, 529 (2003)

    Google Scholar 

  15. Y. Li, R. Gupta: Appl. Phys. B 75, 103 (2002)

    Article  MATH  Google Scholar 

  16. A. Gold: in Proc. Int. School of Physics, Course XLII, Quantum Optics, ed. by R.J. Glauber (Academic, New York 1969)

  17. G. Grynberg, B. Cagnac: Rep. Prog. Phys. 40, 791 (1977); B. Cagnac, G. Grynberg, F. Biraben: J. Phys. (Paris) 34, 845 (1973)

    Article  Google Scholar 

  18. W. Bischel, P.J. Kelly, C.K. Rhodes: Phys. Rev. A 13, 1817 (1976)

    Article  Google Scholar 

  19. See, for example, B.W. Shore, D.H. Menzel: Principles of Atomic Spectra (Wiley, New York 1968)

  20. M.E. Rose: Elementary Theory of Angular Momentum (Wiley, New York 1957)

  21. Q. He, R. Vyas, R. Gupta: Appl. Opt. 36, 1841 (1997)

    Google Scholar 

  22. A. Rose, R. Vyas, R. Gupta: Appl. Opt. 25, 4626 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gupta.

Additional information

PACS

82.80.Kq; 42.62.Fi; 39.30.+w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alahmed, Z., Gupta, R. Theory of two-photon photothermal deflection spectroscopy in stationary and flowing media for arbitrary optical pulse length. Appl Phys B 79, 741–749 (2004). https://doi.org/10.1007/s00340-004-1610-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1610-7

Keywords

Navigation