Log in

Growth and magnetic properties of iron-based oxide thin films deposited by pulsed laser deposition at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, room temperature epitaxial growth of Zn-doped iron oxide films (Zn: FeOx) was achieved by pulsed laser deposition, on c-cut sapphire substrates without any high temperature thermal treatments before the growth. The nature of the oxide phases (wüstite and/or spinel) present in the films depends on the oxygen pressure during the laser ablation. At the residual vacuum (2 × 10− 7 mbar), the (111) wüstite (Zn: FeO) textures was obtained in the films, while oxygen pressures between 2 × 10− 5 to 2 × 10− 3 mbar led to the growth of the spinel (Zn: Fe3O4) phase on the c-cut sapphire substrate. Moreover, the species emitted by the target in the 2 × 10− 7 to 2 × 10− 5 mbar range, preserve their high kinetic energy which allows an easy crystallization of the film on the substrate at room temperature, leading to the epitaxial growth of the wustite and spinel phases. Magnetic properties through M(H) curves at 10 K and 300 K, of the wüstite-based film grown under 2 × 10− 7 mbar were studied, and an exchange bias due to the presence of Fe3+ cation in the film is observed. Finally, the possible mechanisms of the room temperature epitaxial growth of the oxide films on the substrate are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. -D.P. Norton, Synthesis and properties of epitaxial electronic oxide thin film materials. Mat. Sci. Eng. R. 43, 139 (2004)

    Article  Google Scholar 

  2. -J. Narayan, Recent progress in film epitaxy across the misfit scale. Acta Mater. 61, 2703 (2013)

    Article  ADS  Google Scholar 

  3. -A. Roemer, E. Millon, B. Vincent, A. Boudrioua, O. Pons-Y-Moll, R.M. Defourneau, W. Seiler, Epitaxial PbTiO3 thin films grown on (100) MgO by pulsed-laser deposition for optical waveguiding properties. J. Appl. Phys. 95, 3041 (2004)

    Article  ADS  Google Scholar 

  4. -S. Tricot, M. Nistor, E. Millon, C. Boulmer-Leborgne, N.B. Mandache, J. Perrière, W. Seiler, Epitaxial ZnO thin films grown by pulsed electron beam deposition. Surf. Sci. 604, 2024 (2010)

    Article  ADS  Google Scholar 

  5. -D. Rasic, R. Sachan, M.F. Chisholm, J. Prater, J. Narayan, Room temperature growth of epitaxial titanium nitride by pulsed-laser deposition. Cryst. Growth. Des. 17, 6634 (2017)

    Article  Google Scholar 

  6. -T. Kiyomura, M. Gomi, Structural and magnetic properties of spinel ferrite epitaxial films pulsed-laser-deposited at low temperature. Jpn J. Appl. Phys. 40, 118 (2001)

    Article  ADS  Google Scholar 

  7. -V. Craciun, J. Perriere, N. Bassim, R.K. Singh, D. Craciun, J. Spear, Low temperature growth of epitaxial ZnO films on (001) sapphire by ultraviolet-assisted pulsed laser deposition. Appl. Phys. A 69, S531 (1999)

    Article  ADS  Google Scholar 

  8. -M. Yoshimoto, K. Shimozono, T. Maeda, T. Onishi, M. Kumagai, T. Chikyow, O. Ishiyama, M. Shinohara, H. Koinuma, Room-temperature epitaxial growth of CeO2 thin films on Si (111) substrates for fabrication of sharp oxide/silicon interface. Jpn J. Appl. Phys. 34, L688 (1995)

    Article  ADS  Google Scholar 

  9. -T. Onishi, M. Yoshimoto, G.H. Lee, T. Maeda, H. Koinuma, Unit cell layer-by-layer heteroepitaxy of BaO thin films at temperatures a low as 20°C. J. Vac Sci. Technol. A 15, 2469 (1997)

    Article  Google Scholar 

  10. -Y.T. Ho, K.S. Chang, K.C. Liu, L.Z. Hsieh, M.H. Liang, Room temperature epitaxial growth of (001) CeO2 on (001) LaAlO3 by pulsed laser deposition. Cryst. Res. Technol. 48, 308 (2013)

    Article  Google Scholar 

  11. -K. Shimomoto, A. Kobayashi, K. Mitamura, K. Ueno, J. Ohta, M. Oshima, H. Fujika, Characteristics of m-plane InN films grown on ZnO substrates at room temperature by pulsed laser deposition. Jpn J. Appl. Phys. 49, 080202 (2010)

    Article  ADS  Google Scholar 

  12. -A. Matsuda, R. Yamauchi, D. Shiojiri, G. Tan, S. Kaneko, M. Yoshimoto, Room-temperature selective epitaxial growth of CoO (111) and Co3O4 (111) thin films with atomic steps by pulsed laser deposition. Appl. Suf Sci. 349, 78 (2015)

    Article  Google Scholar 

  13. -X.B. Liu, H.B. Lu, M. He, K.J. **, G.Z. Yang, Room-temperature epitaxial growth of V2O3 films. Sci. China-Phys Mech. Astron. 57, 1866 (2014)

    Article  ADS  Google Scholar 

  14. -Y. Kakehi, S. Nakao, K. Satoh, T. Kusaka, Room-temperature epitaxial growth of NiO (111) thin films by pulsed laser deposition. J. Cryst. Growth. 237–239, 591 (2002)

    Article  ADS  Google Scholar 

  15. -T. Kiyomura, M. Gomi, Room-temperature epitaxial growth of Ni-Zn ferrite thin films by pulsed laser deposition in high vacuum. Jpn J. Appl. Phys. 36, L1000 (1997)

    Article  ADS  Google Scholar 

  16. -A. Matsuda, S. Akiba, M. Kasahara, T. Watanabe, Y. Akita, Y. Kitamoto, T. Tojo, H. Kawaji, T. Atake, K. Koyama, M. Yoshimoto, Fabrication of ferromagnetic ni epitaxial thin film by way of hydrogen reduction of NiO. Thin Solid Films. 516, 3873 (2008)

    Article  ADS  Google Scholar 

  17. -M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, O. Ishiyama, M. Shinohara, M. Kubo, R. Miura, A. Piyamoto, Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin film fabrication. Appl. Phys. Lett. 67, 2615 (1995)

    Article  ADS  Google Scholar 

  18. -M. Yoshimoto, A. Sasaki, S. Akiba, Nanoscale epitaxial growth control of oxide thin films by laser molecular beam epitaxy – towards oxide nanoelectronics. Sci. Technol. Adv. Mater. 5, 527 (2004)

    Article  Google Scholar 

  19. -J.T. Gudmundson, A. Anders, A. von Kendell, Foundations of physical vapor deposition with plasma assistance. Plasma Sources Sci. Technol. 31, 083001 (2022)

    Article  ADS  Google Scholar 

  20. -V. Trtik, A. Perez, J. Navarro, C. Ferrater, F. Sanchez, M. Varela, Influence of laser-ablation plume dynamics on the room-temperature epitaxial growth of CeO2 on silicon. Appl. Phys. A 69, S815 (1999)

    Article  ADS  Google Scholar 

  21. -M. Yoshimoto, R. Yamauchi, D. Shiojiri, G. Tan, S. Kaneko, A. Matsuda, Room-temperature synthesis of epitaxial oxide thin films for development of unequilibrium structure and novel functionalization. J. Ceram. Soc. Japan. 121, 1 (2013)

    Article  Google Scholar 

  22. -Y.K. Kim, M. Oliveria, Magnetic properties of reactively sputtered Fe1 – x O and Fe3O4 thin films. J. Appl. Phys. 75, 431 (1994)

    Article  ADS  Google Scholar 

  23. -Y. Peng, C. Park, D.E. Laughlin, Fe3O4 thin films sputter deposited from iron oxide targets. J. Appl. Phys. 93, 7957 (2003)

    Article  ADS  Google Scholar 

  24. -S. Tiwari, R. Prakash, R.J. Choudhary, D.M. Phase, Oriented growth of Fe3O4 thin film on crystalline and amorphous substrates by pulsed laser deposition. J. Phys. D: Appl. Phys. 40, 4943 (2007)

    Article  ADS  Google Scholar 

  25. -X. Liu, H. Lu, M. He, L. Wang, H. Shi, K. **, C. Wanh, G. Yang, Room-temperature layer-by-layer epitaxial growth and characteristics of Fe3O4 ultrathin films. J. Phys. D: Appl. Phys. 47, 105004 (2014)

    Article  ADS  Google Scholar 

  26. -C.-E. Bejjit, V. Rogé, C. Cachoncinlle, C. Hebert, J. Perrière, E. Briand, E. Millon, Iron oxide thin films grown on (00l) sapphire substrate by pulsed-laser deposition. Thin Solid Films. 745, 139101 (2022)

    Article  ADS  Google Scholar 

  27. -V. Demange, X. Portier, S. Ollivier, M. Pasturel, T. Roisnel, M. Guilloux-Viry, C. Hebert, M. Nistor, C. Cachoncinlle, E. Millon, J. Perrière, Room-temperature epitaxial growth of Zn-doped iron oxide films on c-, a-, and r-cut sapphire substrates. Cryst. Growth. Des. 23, 8534 (2023)

    Article  Google Scholar 

  28. -Y. Thimont, J. Clatot, M. Nistor, C. Labrugere, A. Rougier, From ZnF2 to ZnO films using pulsed-laser deposition: Optical and electrical properties. Sol. Energy Mater. Sol. Cells. 107, 136–141 (2012)

    Article  Google Scholar 

  29. -P. Atanasov, R.I. Tomov, J. Perrière, R. Eason, N. Vainos, A. Klimi, A. Zherikhin, E. Millon, Growth of nd:potassium gadolinium tungstate thin-film waveguides by pulsed laser deposition. Appl. Phys. Lett. 76, 2490 (2000)

    Article  ADS  Google Scholar 

  30. -J. Clatot, M. Nistor, A. Rougier, Influence of Si concentration on electrical and optical properties of room temperature ZnO:Si thin films. Thin Solid Films. 531, 197 (2013)

    Article  ADS  Google Scholar 

  31. -C. Marechal, E. Lacaze, W. Seiler, J. Perrière, Growth mechanisms of laser deposited BiSrCaCuO films on MgO substrates. Phys. C : Superconductivity. 294, 23 (1998)

    Article  ADS  Google Scholar 

  32. -E. Le Boulbar, E. Millon, J. Mathias, C. Boulmer-Leborgne, M. Nistor, F. Gherendi, N. Sbaï, J.B. Quoirin, Pure and Nb-doped TiO1.5 films grown by pulsed-laser deposition for transparent p-n homojunctions. Appl. Surf. Sci. 257, 5380 (2011)

    Article  ADS  Google Scholar 

  33. -N. Chaoui, E. Millon, J.F. Muller, P. Ecker, W. Bieck, H.N. Migeon, On the role of ambient oxygen in the formation of lead titanate pulsed laser deposition thin films. Appl. Surf. Sci. 138–139, 256 (1999)

    Article  ADS  Google Scholar 

  34. -N. Chaoui, E. Millon, J.F. Muller, P. Ecker, W. Bieck, H.N. Migeon, Perovskite lead titanate PLD thin films: study of oxygen incorporation by O18 tracing techniques. Mat. Chem. Phys. 59, 114 (1999)

    Article  Google Scholar 

  35. -M. Nistor, A. Petitmangin, C. Hebert, W. Seiler, Nanocomposite oxide thin films grown by pulsed energy beam deposition. Appl. Surf. Sci. 257, 5337 (2011)

    Article  ADS  Google Scholar 

  36. -R. Yamauchi, Y. Hamasaki, T. Shibuya, A. Saito, N. Tsuchimine, K. Koyama, A. Matsuda, M. Yoshimoto, Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates. Sci. Rep. 5, 14385 (2015)

    Article  ADS  Google Scholar 

  37. -Y. Fuji, M. Hara, H. Yuasa, S. Murakami, H. Fukuzawa, Enhancement of magnetoresistance by ultra-thin zn wüstite layer. Appl. Phys. Lett. 99, 132103 (2011)

    Article  ADS  Google Scholar 

  38. -S.G. Bhat, P.S. Anil Kumar, Investigation on the origin of exchange bias in epitaxial, oriented and polycrystalline Fe3O4 thin films. AIP Adv. 5, 117123–117121 (2015)

    Article  ADS  Google Scholar 

  39. -S. Moll, S.-U. Weber, K.-D. Becker, W. Mader, Solid Solutions in the System Fe1–xO/ZnO at low Oxygen partial pressure. Z. Anorg Allg Chem. 636, 1880 (2010)

    Article  Google Scholar 

  40. -J. Perrière, C. Hebert, M. Nistor, E. Millon, J.J. Ganem, N. Jedrecy, Zn1 – xFexO films: from transparent Fe-diluted ZnO wurtzite to magnetic zn diluted Fe3O4 spinel. J. Mater. Chem. C 3, 11239 (2015)

    Article  Google Scholar 

  41. -P. Pant, J.D. Budai, R. Aggarwal, R. Narayan, J. Narayan, Thin film epitaxy and structure property correlations for non-colar ZnO films. Acta Mater. 57, 4426 (2009)

    Article  ADS  Google Scholar 

  42. -J. Narayan, K. Dovidenko, A.K. Sharma, S. Oktyabrsky, Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/ α-Al2O3 heterostructures. J. Appl. Phys. 84, 2597 (1998)

    Article  ADS  Google Scholar 

  43. -W. Seiler, M. Nistor, C. Hebert, J. Perrière, Epitaxial undoped indium oxide thin films: structural and physical properties, Solar En. Mat. Solar Cells. 116, 34 (2013)

    Article  Google Scholar 

  44. -M. Nistor, E. Millon, C. Cachoncinlle, W. Seiler, N. Jedrecy, C. Hebert, J. Perrière, Transparent conductive Nd-doped ZnO thin films. J. Phys. D 48, 195103 (2015)

    Article  ADS  Google Scholar 

  45. -C. Colliex, T. Manoubi, C. Ortiz, Electron-energy-loss-spectroscopy near-edge fine-structures in the iron-oxygen system. Phys. Rev. B 44, 11402 (1991)

    Article  ADS  Google Scholar 

  46. -N. Jedrecy, C. Hebert, J. Perriere, M. Nistor, E. Millon, Magnetic and magneto-transport properties of ZnxFe3 – xO4 – y thin films. J. Appl. Phys. 116, 213903 (2014)

    Article  ADS  Google Scholar 

  47. -U. Schwertman, R.M. Cornell, The iron oxides: structure, properties, reactions, occurrence and uses, VCH, Weinheim and New York, 1996. ISBN 3-527-28576-8

  48. -D.V. Dimitrov, K. Unruh, G.C. Hadjipanayis, V. Papafthymiou, A. Simopoulos, Defect clusters in Fe1-xO and their ferrimagnetic properties. J. Appl. Phys. 87, 7022 (2000)

    Article  ADS  Google Scholar 

  49. -Y.K. Kim, M. Olivetia, Magnetic properties of reactively sputtered Fe1 – x0 and Fe&, thin films. J. Appl. Phys. 75, 431 (1994)

    Article  ADS  Google Scholar 

  50. -C.R.A. Catlow, B.E.F. Fender, Calculations of defect clustering in Fe1-xO. J. Phys. C Solid State Phys. 8, 3267 (1975)

    Article  ADS  Google Scholar 

  51. -M. Gheisari, M. Mozaffari, M. Acet, J. Amighian, Preparation and investigation of magnetic properties of wüstite nanoparticles. J. Magnetism Magn. Mater. 320, 2618 (2008)

    Article  ADS  Google Scholar 

  52. -M. Gheisari, M. Mozaffari, M. Niyaifar, J. Amighian, R. Soleimani, Observation of small exchange bias in defect wüstite (Fe0.93O). J. Superconductivity Novel Magnetism. 26, 237 (2013)

    Article  Google Scholar 

  53. -P.V.M. Shameen, L. Mekala, S. Kumar, Structural and magnetic properties of non-stoichiometric Fe1 – xO, AIP Conf. Proc. 1942, 080077 (2018)

  54. -S. Amoruso, B. Toftmann, J. Schou, Thermalization of a UV laser ablation plume in a background gas: from a directed to a diffusion like flow. Phys. Rev. E. 69, 056403 (2004)

    Article  ADS  Google Scholar 

  55. -S. Amoruso, B. Toftmann, J. Schou, R. Velotta, X. Wang, Diagnostics of laser ablated plasma plumes. Thin Solid Films. 453–454, 562 (2003)

    Google Scholar 

  56. -T. Wijnands, E.P. Houwman, G. Koster, G. Rijnders, M. Huijben, Numerical modeling of the plasma plume propagation and oxidation during pulsed laser deposition of complex oxide thin films. Phys. Rev. Mat. 4, 103803 (2020)

    Google Scholar 

  57. -X. Portier, C. Hebert, E. Briand, J. Perrière, E. Millon, C. Cachoncinlle, M. Nistor, N. Jedrecy, Microstructure of nanocomposite wurtzite-spinel (fe:ZnO)-(Zn:Fe3O4) epitaxial films. Mat. Chem. Phys. 229, 130 (2019)

    Article  Google Scholar 

  58. -P.B. Mozhaev, J.E. Mozhaeva, A.V. Khoryushin, J.B. Hansen, C.S. Jacobsen, I.K. Bdikin, I.M. Kotelyanskii, V.A. Luzanov, Three dimensional graphoepitaxial growth of oxide films by pulsed laser deposition. Phys. Rev. Mater. 2, 103401 (2018)

    Article  Google Scholar 

  59. -Y-H, Chu, « Van Der Waals oxide heteroepitaxy ». NPJ Quantum Mater. 2, 67 (2017)

    Article  ADS  Google Scholar 

  60. -S. Ke, J. **e, C. Chen, P. Lin, X. Zeng, L. Shu, L. Fei, Y. Wang, M. Ye, D. Wang, Van Der Waals epitaxy of Al-doped ZnO film on mica as a flexible transparent heater with ultrafast thermal response. Appl. Phys. Lett. 112, 031905 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

XP is grateful to the ANR (Agence Nationale de la Recherche) organisation and the Normandie Region for their financial support in the acquisition of the EELS spectrometer and the FIB setup (ANR-11-EQPX-0020). He also thanks Franck LEMARIE for the preparation of the TEM samples. All the results reported in this manuscript fall within the scope of the research foundation IRMA (FR 3095). Pole figure measurements were performed on Osirix platform (ScanMAT, UAR 2025 University of Rennes-CNRS), which received a financial support from the European Union through the European Regional Development Fund (ERDF), the Département d’Ille et Vilaine, Rennes Métropole and Région Bretagne (2015–2020 CPER project SCANMAT).

Author information

Authors and Affiliations

Authors

Contributions

X.P., E.M., and J.P. wrote the original draft of the manuscript. All authors commented on previous versions of the manuscript, read and approved the final manuscript. X.P. performed the TEM and EELS measurements, analyzed, and interpreted the corresponding data. E.M. analyzed and interpreted the data and managed the article. V.D. performed the XRD pole figure measurements, analyzed, and interpreted the corresponding data. S.O. performed the AFM measurements and analyzed the corresponding data. C.H. synthesized PLD films and performed the magnetic measurements and analyzed the corresponding data. M.N., C.C. and M.G. revised the manuscript. J.P. conceived and designed the project, synthesized PLD films, performed theta/2theta XRD and RBS measurement. He analyzed and interpreted the data.

Corresponding author

Correspondence to E. Millon.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portier, X., Millon, E., Demange, V. et al. Growth and magnetic properties of iron-based oxide thin films deposited by pulsed laser deposition at room temperature. Appl. Phys. A 130, 502 (2024). https://doi.org/10.1007/s00339-024-07674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07674-6

Keywords

Navigation