Log in

Electrochemical and optical comparison of Cr3+, Co2+, Ag1+, Hg1+ and Pb4+ doped WO3 as a thin layer working electrode for electrochemical sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tungsten oxide (WO3) is a well-known transition metal oxide that demonstrates stability and non-toxicity in its nanoparticle form. Because of its facile and cost-effective synthesis method, it is a promising candidate for several applications like electrochromic devices, photo catalysts and gas sensors. In the present work, WO3 nanoparticles were synthesized through a one-step hydrothermal process. Subsequently, the pure WO3 sample underwent do** with different materials, including Cr+ 3, Co+ 2, Ag+ 1, Hg+ 1 and Pb+ 4. The crystallographic properties and phase transitions of the crystalline substances were demonstrated by the structural characterisation of all the as-synthesised materials using the X-ray diffraction technique. The optical properties were explored by UV-visible spectroscopy, revealing the energy band gap from 2.53 eV to 3.75 eV. Field Emission Scanning electron microscopy (FESEM) images depicted the morphological features of the material. The pure WO3 exhibited a 2D nanosheet structure, while the doped materials displayed morphologies ranging from nanosheets or nanorods to polyhedral sheets. Microstructural analysis by TEM revealed particle size for all samples along with fringes and SAED pattern confirming the presence of respective planes. The electrochemical properties of the synthesized samples were investigated using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) techniques. This research delves into exploring the electrochemical sensing potential of tungsten oxide doped with chromium, cobalt, silver, mercury, and lead as thin layer working electrodes, driven by the pressing need for advancements in sensing technologies. Through a comprehensive investigation of their electrochemical and optical characteristics, this study aims to discern their suitability for sensing applications, providing insights crucial for future sensor design and synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data is presented in the manuscript and supplementary file.

References

  1. F. Lv et al., Iridium–Tungsten Alloy nanodendrites as pH-Universal Water-Splitting electrocatalysts. ACS Cent. Sci. 4(9), 1244–1252 (Sep. 2018). https://doi.org/10.1021/acscentsci.8b00426

  2. R. Azimirad, O. Akhavan, A.Z. Moshfegh, Simple Method to Synthesize NaxWO3 Nanorods and Nanobelts, The Journal of Physical Chemistry C, vol. 113, no. 30, pp. 13098–13102, Jul. 2009, https://doi.org/10.1021/jp902189h

  3. C.C. Mardare, A.W. Hassel, Review on the versatility of Tungsten Oxide Coatings. Phys. Status Solidi (A) Appl. Mater. Sci. 216(12) (Jun. 2019). https://doi.org/10.1002/pssa.201900047

  4. J. Wang, A. Han, S. Jaenicke, G.-K. Chuah, Chapter 6 - advances in Sorbents and photocatalytic materials for Water Remediation, in in New and Future Developments in Catalysis, ed. by S.L. Suib (Elsevier, Amsterdam, 2013), pp. 127–153. https://doi.org/10.1016/B978-0-444-53870-3.00006-X

    Chapter  Google Scholar 

  5. A.Z. Moshfegh, R. Azimirad, O. Akhavan, Optical properties and surface morphology of evaporated (WO3)1 – x–(Fe2O3)x thin films. Thin Solid Films. 484(1), 124–131 (2005). https://doi.org/10.1016/j.tsf.2005.02.019

    Article  ADS  Google Scholar 

  6. D. Ma, T. Li, Z. Xu, L. Wang, J. Wang, Electrochromic devices based on tungsten oxide films with honeycomb-like nanostructures and nanoribbons array. Sol. Energy Mater. Sol. Cells. 177, 51–56 (2018). https://doi.org/10.1016/j.solmat.2017.06.009

    Article  Google Scholar 

  7. M. Gies, F. Michel, C. Lupó, D. Schlettwein, M. Becker, A. Polity, Electrochromic switching of tungsten oxide films grown by reactive ion-beam sputter deposition. J. Mater. Sci. 56(1), 615–628 (2021). https://doi.org/10.1007/s10853-020-05321-y

    Article  ADS  Google Scholar 

  8. R. Azimirad, O. Akhavan, A.Z. Moshfegh, Influence of Coloring Voltage and Thickness on Electrochromical Properties of e-beam Evaporated WO3 Thin Films, J Electrochem Soc, vol. 153, no. 2, p. E11, Dec. 2005, https://doi.org/10.1149/1.2137653

  9. A. Hoel, L.F. Reyes, P. Heszler, V. Lantto, C.G. Granqvist, Nanomaterials for environmental applications: novel WO3-based gas sensors made by advanced gas deposition, Current Applied Physics, vol. 4, no. 5, pp. 547–553, Aug. 2004, https://doi.org/10.1016/J.CAP.2004.01.016

  10. J.P. Kollender, A.I. Mardare, A.W. Hassel, Effect of different cobalt concentrations on Tungsten Trioxide Photoelectrodes for Use in Solar Water Oxidation. J. Electrochem. Soc. 162(4), H187–H193 (2015). https://doi.org/10.1149/2.0711503jes

    Article  Google Scholar 

  11. A.W. Hassel et al., Nanomechanics of single crystalline tungsten nanowires, J Nanomater, vol. 2008, no. 1, 2008, https://doi.org/10.1155/2008/638947

  12. B. Ahmed et al., Well-controlled in-situ growth of 2D WO3 rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties. J. Hazard. Mater. 347, 266–278 (2018). https://doi.org/10.1016/j.jhazmat.2017.12.069

    Article  Google Scholar 

  13. O. Akhavan, M. Choobtashani, E. Ghaderi, Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J. Phys. Chem. C 116(17), 9653–9659 (May 2012). https://doi.org/10.1021/jp301707m

  14. A. Esfandiar, A. Irajizad, O. Akhavan, S. Ghasemi, M.R. Gholami, Pd–WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. Int. J. Hydrogen Energy. 39, 8169–8179 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.117

    Article  ADS  Google Scholar 

  15. S.J. Lee et al., Apr., VO2/WO3-Based Hybrid Smart Windows with Thermochromic and Electrochromic Properties, ACS Sustain Chem Eng, vol. 7, no. 7, pp. 7111–7117, 2019, https://doi.org/10.1021/acssuschemeng.9b00052

  16. R. Azimirad, A. Khademi, O. Akhavan, A.Z. Moshfegh, Growth of Na0.3WO3 nanorods for the field emission application. J. Phys. D Appl. Phys. 42, 205405 (Sep. 2009). https://doi.org/10.1088/0022-3727/42/20/205405

  17. M. Arslan, Y.E. Firat, S.R. Tokgöz, A. Peksoz, Fast electrochromic response and high coloration efficiency of Al-doped WO3 thin films for smart window applications, Ceram Int, vol. 47, no. 23, pp. 32570–32578, Dec. 2021, https://doi.org/10.1016/j.ceramint.2021.08.152

  18. Y. Yin, C. Lan, H. Guo, C. Li, Reactive sputter deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic devices. ACS Appl. Mater. Interfaces. 8(6), 3861–3867 (Feb. 2016). https://doi.org/10.1021/acsami.5b10665

  19. Z. **e et al., Fast fabrication of a WO 3·2H 2O thin film with improved electrochromic properties. J. Mater. Chem. 22(37), 19904–19910 (Oct. 2012). https://doi.org/10.1039/c2jm33622g

  20. R. Zhang, F. Ning, S. Xu, L. Zhou, M. Shao, M. Wei, Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting. Electrochim. Acta. 274, 217–223 (2018). https://doi.org/10.1016/j.electacta.2018.04.109

    Article  Google Scholar 

  21. X. Chang, S. Sun, X. Xu, Z. Li, Synthesis of transition metal-doped tungsten oxide nanostructures and their optical properties. Mater. Lett. 65(11), 1710–1712 (Jun. 2011). https://doi.org/10.1016/j.matlet.2011.02.060

  22. G. Adilakshmi, A. Sivasankar Reddy, P. Sreedhara Reddy, C. Seshendra Reddy, Electron Beam evaporated nanostructure WO3 films for gas sensor application. Mater. Sci. Engineering: B 273 (Nov. 2021). https://doi.org/10.1016/j.mseb.2021.115421

  23. M. Deepa, T.K. Saxena, D.P. Singh, K.N. Sood, S.A. Agnihotry, Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties, Electrochim Acta, vol. 51, no. 10, pp. 1974–1989, Feb. 2006, https://doi.org/10.1016/j.electacta.2005.06.027

  24. D. Sánchez-Martínez, A. Martínez-De La, Cruz, E. López-Cuéllar, Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Mater. Res. Bull. 48(2), 691–697 (Feb. 2013). https://doi.org/10.1016/J.MATERRESBULL.2012.11.024

  25. I. Jiménez, J. Arbiol, A. Cornet, J.R. Morante, Structural and gas-sensing properties of WO3 nanocrystalline powders obtained by a sol-gel method from tungstic acid. IEEE Sens. J. 2(4), 329–334 (2002). https://doi.org/10.1109/JSEN.2002.803747

    Article  ADS  Google Scholar 

  26. L. Santos et al., Synthesis of WO3 nanoparticles for biosensing applications. Sens. Actuators B Chem. 223, 186–194 (Feb. 2016). https://doi.org/10.1016/j.snb.2015.09.046

  27. M. Arshad et al., Synthesis and characterization of Zn doped WO3 nanoparticles: Photocatalytic, antifungal and antibacterial activities evaluation. Mater. Res. Express. 7(1) (2020). https://doi.org/10.1088/2053-1591/ab6380

  28. F. Ghasempour, R. Azimirad, A. Amini, O. Akhavan, Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil. Appl. Surf. Sci. 338, 55–60 (2015). https://doi.org/10.1016/j.apsusc.2015.01.217

    Article  ADS  Google Scholar 

  29. S. Mohammed Harshulkhan, K. Janaki, G. Velraj, R. Sakthi Ganapthy, M. Nagarajan, Effect of Ag do** on structural, optical and photocatalytic activity of tungsten oxide (WO3) nanoparticles. J. Mater. Sci.: Mater. Electron. 27(5), 4744–4751 (May 2016). https://doi.org/10.1007/S10854-016-4354-3/FIGURES/9

  30. D. Paluselli, B. Marsen, E.L. Miller, R.E. Rocheleau, Nitrogen do** of reactively sputtered tungsten oxide films. Electrochem. Solid-State Lett. 8(11) (2005). https://doi.org/10.1149/1.2042629

  31. A. Tacca et al., Photoanodes based on Nanostructured WO3 for Water Splitting. ChemPhysChem. 13(12), 3025–3034 (2012). https://doi.org/10.1002/cphc.201200069

    Article  Google Scholar 

  32. S. Adhikari, K. Sarath Chandra, D.-H. Kim, G. Madras, D. Sarkar, Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv. Powder Technol. 29, 1591–1600 (2018). https://doi.org/10.1016/j.apt.2018.03.024

    Article  Google Scholar 

  33. N. Naseri, R. Azimirad, O. Akhavan, A.Z. Moshfegh, Improved electrochromical properties of sol–gel WO3 thin films by do** gold nanocrystals, Thin Solid Films, vol. 518, no. 8, pp. 2250–2257, 2010, https://doi.org/10.1016/j.tsf.2009.08.001

  34. L. Santos et al., Synthesis of WO3 nanoparticles for biosensing applications. Sens. Actuators B Chem. 223, 186–194 (2016). https://doi.org/10.1016/j.snb.2015.09.046

    Article  ADS  Google Scholar 

  35. X. Mu et al., High efficiency organic/silicon hybrid solar cells with do**-free selective emitter structure induced by a WO3 thin interlayer. Nano Energy. 16, 54–61 (2015). https://doi.org/10.1016/j.nanoen.2015.06.015

    Article  Google Scholar 

  36. S. Ansari, M.S. Ansari, S.P. Satsangee, R. Jain, WO3 decorated graphene nanocomposite based electrochemical sensor: a prospect for the detection of anti-anginal drug. Anal. Chim. Acta. 1046, 99–109 (2019). https://doi.org/10.1016/j.aca.2018.09.028

    Article  Google Scholar 

  37. A.C. Anithaa, N. Lavanya, K. Asokan, C. Sekar, WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim. Acta. 167, 294–302 (Jun. 2015). https://doi.org/10.1016/j.electacta.2015.03.160

  38. M.A.M. Khan, S. Kumar, T. Ahamad, A.N. Alhazaa, Enhancement of photocatalytic and electrochemical properties of hydrothermally synthesized WO3 nanoparticles via ag loading. J. Alloys Compd. 743, 485–493 (Apr. 2018). https://doi.org/10.1016/j.jallcom.2018.01.343

  39. H.A. Elbatal, A.M. Abdelghany, F.H. Elbatal, F.M. Ezzeldin, Gamma rays interactions with WO 3-doped lead borate glasses. Mater. Chem. Phys. 134(1), 542–548 (May 2012). https://doi.org/10.1016/j.matchemphys.2012.03.032

  40. F. Li et al., Synthesis and characterization of Cr-doped WO3 nanofibers for conductometric sensors with high xylene sensitivity. Sens. Actuators B Chem. 265, 355–364 (Jul. 2018). https://doi.org/10.1016/j.snb.2018.03.054

  41. V. Hariharan, B. Gnanavel, V. Aroulmoji, R. Sathiyapriya, K. Prabakaran, C. Sekar, Super conducting applications. Int. J. Adv. Sci. Eng. 4(4), 698–2349 (2018). https://doi.org/10.29294/IJASE.4.4.2018.698-706ï

  42. P. Shreya; Phogat, R. Jha, S. Singh, Elevated refractive index of MoS2 amorphous nanoparticles with a Reduced Band Gap Applicable for Optoelectronics, in Recent Advances in Mechanical Engineering. STAAAR 2022 Lecture Notes in Mechanical Engineering, ed. by B. Sethuraman, P. Jain, M. Gupta (Springer, Singapore, 2023), pp. 431–439. https://doi.org/10.1007/978-981-99-2349-6_39

    Chapter  Google Scholar 

  43. S.B. Upadhyay, R.K. Mishra, P.P. Sahay, Cr-doped WO3 nanosheets: Structural, optical and formaldehyde sensing properties. Ceram. Int. 42, 15301–15310 (Nov. 2016). https://doi.org/10.1016/J.CERAMINT.2016.06.170

  44. P. Shreya; Phogat, R. Jha, S. Singh, Microwave-synthesized γ-WO3 nanorods exhibiting high current density and diffusion characteristics. Transition Met. Chem. 48, 167–183 (2023). https://doi.org/10.1007/s11243-023-00533-y

    Article  Google Scholar 

  45. D. Kumari, S. Sharma, P. Phogat, D. Dipti, S. Singh, R. Jha, Enhanced electrochemical behavior of C@CdS Core-Shell heterostructures. Mater. Sci. Engineering: B 301, 117212 (2024). https://doi.org/10.1016/j.mseb.2024.117212

    Article  Google Scholar 

  46. T. Kumar, P. Shreya, V. Phogat, Sahgal, R. Jha, Surfactant-mediated modulation of morphology and charge transfer dynamics in tungsten oxide nanoparticles. Phys. Scripta 2023, 98 (8) 085936. https://doi.org/10.1088/1402-4896/ace566

  47. P. Phogat, R. Shreya, Jha, S. Singh, Optical and microstructural study of wide Band Gap ZnO@ZnS Core–Shell nanorods to be used as solar cell applications, in Recent Advances in Mechanical Engineering. STAAAR 2022 Lecture Notes in Mechanical Engineering, ed. by B. Sethuraman, P. Jain, M. Gupta (Springer, Singapore, 2023), pp. 419–429. https://doi.org/10.1007/978-981-99-2349-6_38

    Chapter  Google Scholar 

  48. P. Phogat, R. Shreya, S. Jha, Singh, Electrochemical Analysis of thermally treated two dimensional zinc sulphide hexagonal nano-sheets with reduced band gap. Phys. Scr. 98(12), 125962 (2023). https://doi.org/10.1088/1402-4896/ad0d93

    Article  ADS  Google Scholar 

  49. P. Van Tong, N.D. Hoa, N. Van Duy, D.T.T. Le, N. Van Hieu, Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with pd nanoparticles. Sens. Actuators B Chem. 223, 453–460 (Feb. 2016). https://doi.org/10.1016/J.SNB.2015.09.108

  50. S.M. Kanan, C.P. Tripp, Synthesis, FTIR studies and sensor properties of WO3 powders. Curr. Opin. Solid State Mater. Sci. 11, 1–2 (Feb. 2007). https://doi.org/10.1016/j.cossms.2007.11.001

  51. IR Spectrum Table. Accessed, Jan. 11, 2024. [Online]. Available: https://www.sigmaaldrich.com/IN/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table

  52. M. Deepa, N. Sharma, P. Varshney, S.P. Varma, S.A. Agnihotry, FTIR investigations of solid precursor materials for sol-gel deposition of WO 3 based electrochromic films, 2000

  53. Y. Li et al., Mar., Identification of Cobalt Oxides with Raman Scattering and Fourier Transform Infrared Spectroscopy, Journal of Physical Chemistry C, vol. 120, no. 8, pp. 4511–4516, 2016, https://doi.org/10.1021/acs.jpcc.5b11185

  54. O. Gharbi, M.T.T. Tran, B. Tribollet, M. Turmine, V. Vivier, Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements. Electrochim. Acta. 343 (May 2020). https://doi.org/10.1016/j.electacta.2020.136109

  55. A. Elzwawy, A.M. Mansour, H.S. Magar, A.B.A. Hammad, R.Y.A. Hassan, A.M. El Nahrawy, Exploring the structural and electrochemical sensing of wide bandgap calcium phosphate/CuxFe3-xO4 core-shell nanoceramics for H2O2 detection. Mater. Today Commun. 33 (Dec. 2022). https://doi.org/10.1016/j.mtcomm.2022.104574

  56. A.B. Abou Hammad et al., Detection of 3,4-diaminotoluene based on Sr0.3Pb0.7TiO3/CoFe2O4 core/shell nanocomposite: Via an electrochemical approach. New J. Chem. 44, 7941–7953 (May 2020). https://doi.org/10.1039/d0nj01074j

Download references

Acknowledgements

Author’s would like to thank vice chancellor of NSUT, Prof. Anand Srivastava for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Tamanna **dal: Conceptualization, Writing - original draft, Peeyush Phogat: Formal analysis Writing-review and editing. Shreya: Formal analysis and software. Ranjana Jha: Supervision. Sukhvir Singh: Supervision.

Corresponding author

Correspondence to Peeyush Phogat.

Ethics declarations

Ethical approval

All the authors have worked in accordance with ethical standard and approved by Netaji Subhas University of Technology.

Conflict of interest

No conflicts of interest exist among the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**dal, T., Phogat, P., Shreya et al. Electrochemical and optical comparison of Cr3+, Co2+, Ag1+, Hg1+ and Pb4+ doped WO3 as a thin layer working electrode for electrochemical sensing. Appl. Phys. A 130, 512 (2024). https://doi.org/10.1007/s00339-024-07666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07666-6

Keywords

Navigation