Log in

The effects of nitrogen ionization during preparation and oxygen pressure during annealing on the morphology, structure, and luminescent properties of Mg-doped ZnO thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In order to understand the effects of nitrogen ionization during preparation and oxygen pressure during annealing (OPA) on the morphology, structure, and luminescent properties of Mg-doped ZnO thin films, Zn0.97Mg0.03O films were prepared in both ionized and non-ionized N2 using Pulsed Laser Deposition (PLD), followed by annealing at 600 °C under various oxygen pressures. X-ray Diffraction (XRD) results reveal that all Zn0.97Mg0.03O films exhibit a preferentially oriented hexagonal wurtzite structure along the (002) direction, with the films prepared in ionized nitrogen showing the presence of Zn3N2 phase. Field Emission Scanning Electron Microscopy (FESEM) observations indicate that the films prepared in non-ionized and ionized N2 exhibit near-spherical and conical shaped particles, respectively. Combined XRD and X-ray Photoelectron Spectroscopy (XPS) analyses indicate an increase in Zn interstitial (Zni) content in the films after annealing, with higher content observed at a higher OPA; films annealed under oxygen pressure of 100 Pa exhibit maximum tensile stress and highest N content. Photoluminescence (PL) spectra of both ionized and non-ionized films reveal a strong ultraviolet-violet peak (360–450 nm) and weaker blue-green peak (450–550 nm), with a broad and weak near-infrared (NIR) peak around 825 nm. The NIR peak primarily originates from the recombination of electrons bound to Zni and holes bound to oxygen vacancies (Vo) ; ionization of nitrogen enhances the green emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. B. Kim, D. Lee, B. Hwang, D.-J. Kim, C.K. Kim, Mol. Cryst. Liq Cryst. 735, 61–74 (2021)

    Article  ADS  Google Scholar 

  2. W. Zhang, N. Tang, Mater. Res. Express. 7, 105903 (2020)

    Article  Google Scholar 

  3. M. Baradaran, F.E. Ghodsi, C. Bittencourt, E. Llobet, J. Alloys Compd. 788, 289–301 (2019)

    Article  Google Scholar 

  4. B.J.A. José, M.D. Shinde, Sci. Rep. 14, 2310 (2024)

    Article  Google Scholar 

  5. B.J.A. José, M.D. Shinde, C.A.C. Azuranahim, Nanomater Energy. 12, 117–130 (2023)

    Article  Google Scholar 

  6. S. Talu, S. Boudour, I. Bouchama, B. Astinchap, H. Ghanbaripour, M.S. Akhtar, S. Zahra, Microsc Res. Tech. 85, 1213–1223 (2022)

    Article  Google Scholar 

  7. Y. Wang, J. Song, H. Zhang, X. Zhang, G. Zheng, J. Xue, B. Han, X. Meng, F. Yang, J. Li, J. Alloys Compd. 822, 153688 (2020)

    Article  Google Scholar 

  8. K. **dal, M. Tomar, R.S. Katiyar, V. Gupta, J. Appl. Phys. 120, 135305 (2016)

    Article  ADS  Google Scholar 

  9. E.A. Martín-Tovar, E. Chan y Díaz, M. Acosta, R. Castro-Rodríguez, A. Iribarren, Appl. Phys. A 122, 1–7 (2016)

    Article  Google Scholar 

  10. C. Wang, Z. Ji, K. Liu, Y. **ang, Z. Ye, J. Cryst. 259, 279–281 (2003)

    Article  ADS  Google Scholar 

  11. H.T. Chang, G.J. Chen, Thin Solid Films. 618, 84–89 (2016)

    Article  ADS  Google Scholar 

  12. S. Simeonov, A. Szekeres, D. Spassov, M. Anastasescu, I. Stanculescu, M. Nicolescu, E. Aperathitis, M. Modreanu, M. Gartner, Nanomaterials. 12, 19 (2022)

    Article  Google Scholar 

  13. C.H. Min, S. Cho, S.H. Lee, D.Y. Cho, W.G. Park, J.G. Chung, E. Lee, J.C. Lee, B. Anass, J.H. Lee, C.S. Hwang, S.J. Oh, Appl. Phys. Lett. 96, 201907 (2010)

    Article  ADS  Google Scholar 

  14. S.K. Pandey, S.K. Pandey, U.P. Deshpande, V. Awasthi, A. Kumar, M. Gupta, S. Mukherjee, Semicond. Sci. Technol. 28, 085014 (2013)

    Article  ADS  Google Scholar 

  15. L. Ma, X. Ai, X. Huang, S. Ma, Superlattice Microst. 50, 703–712 (2011)

    Article  ADS  Google Scholar 

  16. V. Kumar, V. Kumar, S. Som, A. Yousif, N. Singh, O.M. Ntwaeaborwa, A. Kapoor, H.C. Swart, J. Colloid Interface Sci. 428, 8–15 (2014)

    Article  ADS  Google Scholar 

  17. C.H. Hsu, X.P. Geng, W.Y. Wu, M.J. Zhao, P.H. Huang, X.Y. Zhang, Z.B. Su, Z.R. Chen, S.Y. Lien, Mater. Sci. Semicond. Process. 133, 105929 (2021)

    Article  Google Scholar 

  18. C.H. Hsu, X.P. Geng, W.Y. Wu, M.J. Zhao, X.Y. Zhang, P.H. Huang, S.Y. Lien, Molecules. 25, 5043 (2020)

    Article  Google Scholar 

  19. L. Radjehi, A. Djelloul, S. Lamri, M.F. Slim, M. Rahim, Surf. Eng. 35, 520–526 (2019)

    Article  Google Scholar 

  20. L. Wang, J. Liu, L. Zhao, X. Fan, Q. Wang, Opt. Mater. 122, 111672 (2021)

    Article  Google Scholar 

  21. F. Lekoui, S. Hassani, M. Ouchabane, H. Akkari, D. Dergham, W. Filali, E. Garoudja, Braz J. Phys. 51, 544–552 (2021)

    Article  ADS  Google Scholar 

  22. J. Kang, J. Yun, Y.-Y. Oh, S.-J. Kim, M. Kamiko, N.-H. Kim, J.-H. Koh, J. Korean Ceram. Soc. 59, 742–748 (2022)

    Article  Google Scholar 

  23. T.H. Kim, J.J. Park, S.H. Nam, H.S. Park, N.R. Cheong, J.K. Song, S.M. Park, Appl. Sur Sci. 255, 5264–5266 (2009)

    Article  ADS  Google Scholar 

  24. X. Li, Y. Wang, W. Liu, G. Jiang, C. Zhu, Mater. Lett. 85, 25–28 (2012)

    Article  Google Scholar 

  25. J.W. Shin, Y.S. No, J.Y. Lee, J.Y. Kim, W.K. Choi, T.W. Kim, Appl. Sur Sci. 257, 7516–7520 (2011)

    Article  ADS  Google Scholar 

  26. R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087–1095 (1998)

    Article  ADS  Google Scholar 

  27. J. Luo, H.Y. Liu, W.J. Deng, R.G. Zhang, C. He, J. Mater. Sci. -Mater El. 34, 2172 (2023)

    Article  Google Scholar 

  28. L.C. Chao, S.J. Lin, W.C. Chang, Nucl. Instrum. Meth B 268, 1581–1584 (2010)

    Article  ADS  Google Scholar 

  29. M. Wang, J. Yi, S. Yang, Z. Cao, X. Huang, Y. Li, H. Li, J. Zhong, Appl. Sur Sci. 382, 217–224 (2016)

    Article  ADS  Google Scholar 

  30. A. Goktas, A. Tumbul, Z. Aba, M. Durgun, Thin Solid Films. 680, 20–30 (2019)

    Article  ADS  Google Scholar 

  31. S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Photochem. Photobiol B 113, 70–77 (2012)

    Article  Google Scholar 

  32. W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, F. Wu, J. Appl. Phys. 117, 145301 (2015)

    Article  ADS  Google Scholar 

  33. D. Fang, C. Li, N. Wang, P. Li, P. Yao, Cryst. Res. Technol. 48, 265–272 (2013)

    Article  Google Scholar 

  34. P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, Appl. Phys. A 90, 317–321 (2007)

    Article  ADS  Google Scholar 

  35. F.H. Wang, M.S. Chen, Y.L. Jiang, H.W. Liu, T.K. Kang, J. Alloys Compd. 897, 63174 (2022)

    Google Scholar 

  36. T. Zhang, Y. Wang, Z. Pan, Sol Energy. 184, 570–583 (2019)

    Article  ADS  Google Scholar 

  37. J. Varghese, S.K. Saji, N.R. Aswathy, R. Vinodkumar, Eur. Phys. J. Plus. 136, 1–13 (2021)

    Article  Google Scholar 

  38. M. Abdelkrim, M. Guezzoul, M. Bedrouni, M. Bouslama, A. Ouerdane, B. Kharroubi, J. Alloys Compd. 920, 165703 (2022)

    Article  Google Scholar 

  39. H.W. Fang, J.Y. Juang, S.J. Liu, Int. J. Nanotechnol. 14, 992–1000 (2017)

    Article  ADS  Google Scholar 

  40. B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Adv. Funct. Mater. 20, 1161–1165 (2010)

    Article  Google Scholar 

  41. S. Vempati, J. Mitra, P. Dawson, Nanoscale Res. Lett. 7, 1–10 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hongyu Liu provided ideas and guided the design of research plans, and **g Luo implemented the research process, collected and sorted out data and wrote a thesis. During the experiment, technical was supported by Rengang Zhang, Weijie Deng.

Corresponding author

Correspondence to Hongyu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Liu, H., Deng, W. et al. The effects of nitrogen ionization during preparation and oxygen pressure during annealing on the morphology, structure, and luminescent properties of Mg-doped ZnO thin films. Appl. Phys. A 130, 495 (2024). https://doi.org/10.1007/s00339-024-07652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07652-y

Keywords

Navigation