Log in

Performance parameters of a Ag-coated evanescent field optical fiber sensor for temperature measurement via surface plasmon resonance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The performance parameters of a type of sensing device for temperature measurement are determined experimentally and theoretically using a technique of excitation of surface plasmon resonances in optical fibers. The developed device consists of a tapered optical fiber coated with silver nanoparticles (AgNPs) that were obtained using the green synthesis technique. For the verification of the experimental results, the transference matrix model, the Drude model and the theory of surface plasmon resonance in the Kretschmann configuration was used. During the investigation it is verified that the transmittance measured as a response signal of the optical fiber is in accordance with the theoretical results obtained from the mathematical modeling. To determine the performance parameters of the device developed for temperature measurement, the sensitivity S and the figure of merit FOM of the device were determined from the rate of change of the plasmon resonance wavelength shift as a function of the temperature gradients and transmission spectra at the output of the tapered optical fiber for different temperature values, observing a red shift of the plasmonic resonance wavelength with decreasing temperature. For the case of FOM, this was determined indirectly using S and Full Width at Half Maximum FWHM. Experimental results reveal that the developed devices exhibit sensitivities in the order of -0.18 nm/°C to -0.52 nm/°C with excellent reproducibility, while the FOM is in the order of 1.7 × 10− 2 °C− 1 to 2.4 × 10− 2 °C− 1. Theoretical and experimental results reveal that the sensitivity of the sensor presents a dependence on the geometrical parameters of the device, the nature of the coating and the surface of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.]

References

  1. M. Silva-Lopez, A. Fender, W.N. MacPherson, J.S. Barton, J.D. Jones, D. Zhao, H. Dobb, D.J. Webb, L. Zhang, Bennion, I. Strain and temperature sensitivity of a single-mode polymer optical fiber. Opt. Lett. 30, 3129–3131 (2005)

    Article  ADS  Google Scholar 

  2. M. Pospíšilová, G. Kuncová, J. Trögl, Fiber-Optic Chemical sensors and Fiber-Optic Bio-sensors. Sensors. 15, 25208–25259 (2015)

    Article  ADS  Google Scholar 

  3. J. Su, Label-free biological and Chemical sensing using Whispering Gallery Mode Optical resonators: Past, Present and Future. Sensors. 17, 540 (2017)

    Article  ADS  Google Scholar 

  4. M. Elsherif, A.E. Salih, M.G. Muñoz, F. Alam, B. AlQattan, D.S. Antonysamy, M.F. Zaki, A.K. Yetisen, S. Park, T.D. Wilkinson, H. Butt, Optical Fiber sensors: working principle, applications, and limitations. Adv. Photonics Res. 3, 2100371 (2022)

    Article  Google Scholar 

  5. Z. Lin, Y. Zhao, L. Ri-ging, H. Zheng, Q. Zhao, High-sensitivity salinity sensor based on etched C-type micro-structured fiber sensing structure. Sens. Actuators A: Phys. 339, 113518 (2022)

    Article  Google Scholar 

  6. N.D. Gomez-Cardona, E. Reyes-Vera, P. Torres, Multi-plasmon resonances in microstructured optical fibers: extending the detection range of SPR sensors and a multi-analyte sensing technique. IEEE Sens. J. 18, 1 (2018)

    Article  Google Scholar 

  7. D.A. Avila Padilla, C.O. Torres Moreno, B. Cordeiro, Cristiano. Sensitivity of a PMMA polymer capillary microresonator for measuring relative humidity. Journal of Physics: Conference Series 2017, 792, 012050

  8. Y. Yu, H. Kishikawa, K. Oguchi, H. Chiu, S. Liaw, W. Liu, Graphene-assisted synthesis NH3 gas sensor based on silicon photonics crystal fiber and surface plasmon resonance. Optik. 267, 169654 (2022)

    Article  ADS  Google Scholar 

  9. W. Udos, C. Ooi, S. Tan, K. Lim, J.E. Yen, K. Ong, H. Ahmad, Label-free surface-plasmon resonance fiber grating biosensor for Hand-foot-mouth disease (EV-A71) detection. Optik. 228, 166221 (2021)

    Article  ADS  Google Scholar 

  10. J. Lou, Y. Wang, L. Tong, Microfiber optical sensors: a review. Sensors. 14, 5823–5844 (2014)

    Article  ADS  Google Scholar 

  11. C. Teng, M. Li, Y. Cheng, H. Peng, S. Deng, H. Deng, L. Yuan, M. Chen, Investigation of U-shape tapered plastic optical fiber-based surface plasmon resonance sensor for IR sensing. Optik. 251, 168461 (2022)

    Article  ADS  Google Scholar 

  12. J. Virk, S. Das, R. Kaler, H. Singh, T. Kundu, D-shape optical fiber probe dimension optimization for LSPR bases bio-sensor. Opt. Fiber. Technol. 71, 102930 (2022)

    Article  Google Scholar 

  13. N.D. Gomez-Cardona, E. Reyes-Vera, P. Torres, High sensitivity Refractive Index Sensor based on the excitation of Long-Range Surface Plasmon polaritons in H-Shaped Optical Fiber. Sensors. 20, 2111 (2020)

    Article  ADS  Google Scholar 

  14. A. Shadab, S.K. Raghuwanshi, S. Kumar, Advances in Micro-fabricated Fiber Bragg grating for detection of Physical, Chemical, and Biological Parameters-A Review. IEEE Sens. J. 22, 15650–15660 (2022)

    Article  ADS  Google Scholar 

  15. M.A. Gouveia, P. Avila, D. Marques, T.H. Torres, C.M. Cordeiro, Morphology dependent polymeric capillary optical resonator hydrostatic pressure sensor. Opt. Express. 23, 10643–10652 (2015)

    Article  ADS  Google Scholar 

  16. T. Allsop, R.A. Neal, Review, Evolution and diversity of Optical Fiber Plasmonic Sensors. Sensors. 19, 4874 (2019)

    Article  ADS  Google Scholar 

  17. M.R. Islam, M.M. Ali, M.H. Lai, K.S. Lim, H. Ahmad, Chronology of Fabry-Perot Interferometer Fiber-Optic sensors and their applications: a review. Sensors. 14, 7451–7488 (2014)

    Article  ADS  Google Scholar 

  18. R.P. Tatam, Optical fiber modulation techniques for single mode fiber sensors, in Optical Fiber Sensor Technology, vol. 1, ed. by K.T.V. Grattan, B.T. Meggitt (Springer Dordrecht, London, 1995), pp. 223–267

    Chapter  Google Scholar 

  19. C. Odaci, U. Aydemir, The surface plasmon resonance-based fiber optic sensors: a theoretical comparative study with 2D TMDC materials. Results Opt. 3, 100063 (2021)

    Article  Google Scholar 

  20. M. Pesavento, L. Zeni, G. de Letizia, N. Cennamo, SPR-Optical Fiber-molecularty imprinted Polymer Sensor for the detection of Furfural in Wine. Biosensors. 72, 3 (2021)

    Google Scholar 

  21. S. Horta-Piñeres, B. Hurtado, R. Avila-Padilla, Silver nanoparticle-decorated silver nanowires: a nanocomposite via green synthesis. Appl. Phys. A 126, 15 (2020)

    Article  ADS  Google Scholar 

  22. S. Horta-Piñeres, M. Cortez-Valadez, D. Avila-Padilla, E. Leal-Perez, Et. Al. Green synthesis of silver nanoparticles via Bougainvillea Spectabilis (leaves and stem) for pyridoxine SERS sensing. Appl. Phys. A 128, 1090 (2022)

    Article  ADS  Google Scholar 

  23. B.D. Gupta, S.S. Kumar, R. Verma, Theory of SPR-based Optical Fiber Sensor. Fiber Optic Sensors Based on Plasmonics, ed. by S. Yu (Word Scientific Publishing, Singapore, 2015), pp. 93–117

    Chapter  Google Scholar 

  24. B.L. Douglas, J.F. Bradley, Temperature-dependent absolute refractive index measurements of synthetic fused silica. Optomechanical Technol. Astronomy 2006, 6273

  25. A.K. Sharma, B.D. Gupta, Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection. Opt. Fiber. Technol. 12, 87–100 (2006)

    Article  ADS  Google Scholar 

  26. A. Bultheel, R. Cools, Applications of Chebyshev Polynomials: From Theoretical Kinematics to Practical Computations. The Birth of Numerical Analysis (Word Scientific Publishing, Singapore, 2010), p. 193

    Google Scholar 

  27. R. Brito-Hurtado, M. Cortez-Valadez, N.S. Flores-Lopez, M. Flores-Acosta, Agglomerates of Au-Pt bimetallic nanoparticles: synthesis and antibacterial activity. Gold Bull. 53, 93–100 (2020)

    Article  Google Scholar 

  28. N. Cennamo, L. Zeni, F. Arcadio, E. Catalano, A. Minardo, A Novel Approach to Realizing Low-Cost Plasmonic Optical Fiber Sensors: Light-Diffusing Fibers Covered by Thin Metal Films. Fibers 2019, 7, 34

  29. X. Zhang, X.S. Zhu, Y.W. Shi, Fiber optic surface plasmon resonance sensor based on a silver-coated large-core suspended-core fiber. Opt. Lett. 44, 4550–4553 (2019)

    Article  ADS  Google Scholar 

  30. S. Li, S. Zhang, Y. Guo, H. Li, Y. Wang, X. Zhou, T. Cheng, Experiment and analysis of temperature sensing of microstructured fiber with silver and PDMS films. Sensors. 22, 1447 (2022)

    Article  ADS  Google Scholar 

  31. Y. Lu, M.T. Wang, C.J. Hao, Z.Q. Zhao, J.Q. Yao, Temperature sensing using photinic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 6, 1–7 (2014)

    Google Scholar 

  32. X. Zhang, Y. Xu, X.S. Zhu, Y.W. Shi, Surface plasmon resonance temperature sensor with tunable detection range based on a silver coated multi-hole optical fiber. Opt. Express. 30, 48091–48102 (2022)

    Article  ADS  Google Scholar 

  33. P. Dhara, V.K. Singh, A. Kumar, et. al. Reflection based solicon incorporated silver coated fiber optics SPR sensor for refractive index and temperature measurement. Microsyst. Technol. 2024

  34. T. Cheng, X. Li, S. Li, X. Yan, X. Zhang, F. Wang, Surface plasmon resonance temperature sensor based on a photonic crystal fiber filled with silver nanowires. Appl. Opt. 59, 5108–5113 (2020)

    Article  ADS  Google Scholar 

  35. Z. Yin, K. Li, X. **g, S. Ullah, Z. Zhang, A broadband SPR sensor based on a no-core fiber coated with gold-silver for refractive index and temperature measurement. Infrared Phys. Technol. 132, 104756 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Investigation, Validation, Luis Fernando Espejo Bayona; Investigation, Validation, Sindi Dayana Horta Piñeres; Software, Blas Melendez Caraballo; Validation, Jose Manuel Cortez Valadez; Investigation, Validation, Duber Alexander Avila Padilla and Validation, Cesar Orlando Torres Moreno.

Corresponding author

Correspondence to D. A. Avila.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espejo-Bayona, L., Horta-Piñeres, S., Caraballo, B.M. et al. Performance parameters of a Ag-coated evanescent field optical fiber sensor for temperature measurement via surface plasmon resonance. Appl. Phys. A 130, 490 (2024). https://doi.org/10.1007/s00339-024-07631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07631-3

Keywords

Navigation