Log in

Construction of Ag/Au bimetallic alloying nanoparticles on GaN films for high-performance SERS substrate, and modification of defect states

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Most frequently, pure Ag or Au nanoparticles were used to decorate on GaN-based substrates; however, studies of Ag-Au bimetallic nanoparticles with exceptional optical and plasmonic capabilities are rare. In this study, we present a novel method for creating hybrid Ag-Au NPs/GaN materials, which were discovered to be highly suppressive in the broadband defect emission candidate and high-performance surface-enhanced Raman scattering (SERS) substrates. When the annealing temperature increased from 450 to 650 °C, the average size of Ag nanoparticles reduced from 300 to 50 nm, respectively. Subsequently, enhancing the Raman intensity due to increasing hot spots. The as-fabricated SERS substrate shows a high sensitivity with a wide detection range of 1.0 × 10− 6 – 1.0 × 10− 12 mol L− 1. Furthermore, using the resonance effect between the surface plasmon of Ag-Au NPs and defect emission, the defects states can be suppressed and converted to beneficial excitonic emission. These findings show that Ag-Au bimetallic are a promising candidate for improving optical and trace analyses detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data included in article/supplementary material/referenced in article.

References

  1. J. Guo, M. Zhang, Z. Yin, C. Ding, P. Chen, W. Gan, H. Yu, Z. Sun, Construction of black phosphorus nanosheets and ag nanoparticles co-sensitized TiO2 nanorod arrays as high-performance SERS substrate and photocatalyst. Appl. Surf. Sci. 592, 153265 (2022)

    Article  Google Scholar 

  2. K. Upadhyaya, S. Sharvani, N. Ayachit, S.M. Shivaprasad, Charge transfer-induced enhancement of a Raman signal in a hybrid Ag-GaN nanostructure. RCS Adv. 9, 28554–28560 (2019)

    Google Scholar 

  3. P.M. Leonardo, J. Oliva, T.C. Alejandro, E.D.L. Rosa, SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of nanlytes. Nanoscale. 7, 10249–10258 (2015)

    Article  Google Scholar 

  4. F.M. Vieira, C.M.G. Calisto, C. Izumi, Construction of SERS substrates by gold nanoparticles assembly on polymeric matrices. Appl. Surf. Sci. 612, 155818 (2023)

    Article  Google Scholar 

  5. T.M. Machado, L.P.F. Peixotom, G.F.S. Andrade, M.A.P. Silva, Copper nanoparticles-containing tellurit glasses: an efficient SERS substrate. Mater. Chem. Phys. 278, 125597 (2022)

    Article  Google Scholar 

  6. T.T.X. Ong, E.W. Blanch, O.A.H. Jones, Surface enhanced Raman spectroscopy in environmental analysis, monitoring and assessment, Sci. Total Environ. 720, 137601 (2020)

    Article  Google Scholar 

  7. R. Shi, X. Liu, Ying,facing challenges in real-life application of surface-enhanced Raman scattering: design and nanofabrication of surface-enhanced Raman scattering substrates for rapid filed test of food contaminants. J. Agric. Food Chem. 66, 6525–6543 (2018)

    Article  Google Scholar 

  8. K. Xu, R. Zhou, K. Takei, M. Hong, Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 6, 1900925 (2019)

    Article  Google Scholar 

  9. P. Zhan, T. Wen, Z.-. Wang, Y. He, J. Shi, T. Wang, X. Liu, G. Lu, B. Ding, DNA orgami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced Raman scattering. Angew Chem. Int. Ed. 57, 2846–2850 (2018)

    Article  Google Scholar 

  10. M.D. King, S. Khadka, G.A. Craig, M.D. Mason, Effect of local heating on the SERS efficiency of optical trapped prismatic nanoparticles. J. Phys. Chem. C 112, 11751 (2008)

    Article  Google Scholar 

  11. T. Frosch, A. Knebl, T. Frosch, Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy. Nanophotonics. 9, 19 (2020)

    Article  Google Scholar 

  12. R.P.M. Holler, I.J. Jahn, D. Cialla-May, M. Chanana, J. Popp, A. Fery, C. Kuttner, Biomacromolecular0assembled nanoclusters: key aspects for robust colloid SERS sensing. ACS Appl. Mater. Interfaces. 12, 57302 (2020)

    Article  Google Scholar 

  13. L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Lu, Z. Huang, Z. Li, J.R. Lombardi, A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci. 6, 1900310 (2019)

    Article  Google Scholar 

  14. K.H. Lee, H. Jang, Y.S. Kim, C.H. Lee, S.H. Cho, M.J. Kim, H. Son, K.B. Bae, D.V. Dao, Y.S. Jung, I.H. Lee, Synergistic SERS enhancement on GaN-Ag hybrid system toward label-free and multiplexed detection of antibiotics in aqueous solutions. Adv. Sci. 8, 2100640 (2021)

    Article  Google Scholar 

  15. I. Dziecielewski, S.K. Julita, B. Malgorzata, S. Tomasz, K. Alexandr, W. Jan, Impact of temperature-induced coalescence on SERS properties of au nanoparticles deposted on GaN nano-columnes. Appl. Surf. Sci. 378, 30–36 (2016)

    Article  ADS  Google Scholar 

  16. M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, H. Zeng, Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering. Nanotechnology. 28, 055301 (2017)

    Article  ADS  Google Scholar 

  17. Y. Zhong, J. Zhang, S. Wu, L. Jia, X. Yang, Y. Liu, Y. Zhang, Q. Sun, A review on the GaN-on-Si power electronic devices. Fundamental Res. 2, 462–475 (2022)

    Article  Google Scholar 

  18. Y. Zhao, Y.J. Zhang, J.H. Meng, S. Chen, R. Panneerselvam, C. –Yu, S. Li, X. Bux Jamali, Z.L. Li, Yang, J. –F., Li, Z. Tian, A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates, Journal of Raman Spectroscopy 47 (2016) 622–667

  19. G. Kumar, K. Soni, Silver nanocube-and nanowire-based SERS substrates for ultra-low detection of PATP and thiram molecules. Plasmonics. 15, 1577 (2020)

    Article  Google Scholar 

  20. J.L. Lyons, A. Alkauskas, A. Janotti, C.G. Van de Walle, First-principles theory of acceptors in nitride semiconductors. Phys. Status Solidi (b). 252, 900–908 (2015)

    Article  ADS  Google Scholar 

  21. M. Lee, T.K.O. Vu, K.S. Lee, E.K. Kim, S. Park, Electronic states of deep trap levels in a-plane GaN templates grown on r-plane sapphire by HVPE. Sci. Rep. 8, 7814 (2018)

    Article  ADS  Google Scholar 

  22. Z. **e, Y. Sui, J. Buckeridge, A.A. Sokol, T.W. Keal, A. Walsh, Prediction of multiband luminescence due to the gallium vacancy-oxygen defect complex in GaN. Appl. Phys. Lett. 112, 262104 (2018)

    Article  ADS  Google Scholar 

  23. F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, J. Lu, Underlying mechanism of blue emission enhancement in au decorated p-GaN film. RCS Adv. 7, 15071–15076 (2017)

    Google Scholar 

  24. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Drastic reduction of Plasmon dam** in gold nanorods. Phys. Rev. Lett. 88, 077402–077405 (2002)

    Article  ADS  Google Scholar 

  25. M. Misra, P. Kapur, M.K. Nayak, M. Singla, Synthesis and visible photocatalytic activities of a Au@Ag@ZnO triple layer core-shell nanostructure. New. J. Chem. 38, 4197–4203 (2014)

    Article  Google Scholar 

  26. F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 464, 392 (2010)

    Article  ADS  Google Scholar 

  27. V. Thakur, S. Siddhanta, C. Narayana, S.M. Shivaprasad, Size and distribution control of surface plasmon enhanced photoluminescence and SERS signal in Ag-GaN hybrid systems. RSC Adv. 5, 106832–106837 (2015)

    Article  ADS  Google Scholar 

  28. S. Sharvani, K. Upadhayaya, G. Kurmari, C. Narayana, S.M. Shivaprasad, Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network. Nanotechnology. 26, 465701 (2015)

    Article  ADS  Google Scholar 

  29. Y. Han, L. Qiang, Y. Gao, J. Gao, Q. He, H. Liu, L. Han, Y. Zhang, Large-area surface-enhanced Raman spectroscopy substrate by hybrid porous GaN with Au/Ag for breast cancer, miRNA detection. Appl. Sur Scie. 541, 148456 (2021)

    Article  Google Scholar 

  30. H. Zhou, J. Qiu, Y. Zhang, Y. Liang, L. Han, Y. Zhang, Self-assembled C-Ag hybrid nanoparticle on nanoporous GaN enabled ultra-high enhancement factor SERS sensor for sensitive thiram detection. J. Hazard. Mater. 469, 133868 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Physics development program grant funded by Vietnam Academy of Science and Technology (VAST) (KHCBVL.06/24–25). EKK acknowledges the financial support by the Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korean government (MOTIE) (No.RS-2022-00143570).

Author information

Authors and Affiliations

Authors

Contributions

In this article, the author’s contribution are as follow: Thi Kim Oanh Vu: Study conception and design, data collection, and manuscript preparation Nguyen Thi Thanh Bao: Data collection and analysis and interpretation of results Bui Thi Thu Phuong: Data collection and analysis and interpretation of results Hoang Van Thanh: Data collection and analysis and interpretation of results Nguyen Ngoc Anh: Study conception and design and data collection Nguyen Thi Minh Hien: Data collection and analysis and interpretation of results Eun Kyu Kim: Study conception and design, and manuscript preparation.

Corresponding authors

Correspondence to Thi Kim Oanh Vu or Eun Kyu Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.K.O., Bao, N.T.T., Phuong, B.T.T. et al. Construction of Ag/Au bimetallic alloying nanoparticles on GaN films for high-performance SERS substrate, and modification of defect states. Appl. Phys. A 130, 353 (2024). https://doi.org/10.1007/s00339-024-07539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07539-y

Keywords

Navigation