Log in

Development of CuSe/polypyrrole electrocatalyst for oxygen evolution reaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrochemical water splitting stands as a promising method for harnessing energy from renewable sources. However, substantial overpotential required for sluggish oxygen evolution reaction (OER) hampers its widespread adoption. In this study, a CuSe@PPy hybrid is being created by hydrothermally layering polypyrrole on top of CuSe. This hybrid electrocatalyst outperforms both pure CuSe and PPy in terms of OER efficiency. Structural and morphological analyses, including powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller (BET), confirm that the synthesized CuSe@PPy composite exhibits high crystallinity, nanostructured granular morphology, and a hexagonal structure with a large surface area. Evaluation of its electrocatalytic performance for water oxidation in a 1 M KOH alkaline medium reveals CuSe@PPy hybrid's exceptional durability, achieving 35 mA cm−2 for 100 h. This durability is attributed to PPy coating on its surface, which facilitates efficient electron conduction. Coupling of PPy with CuSe leads to reduced overpotential (248 mV), a lower Tafel slope (30 mV/dec), and decreased charge transfer resistance (2.16 Ω), enhancing OER efficiency. By modifying surface of CuSe with a conducting polymer like PPy, this study underscores potential for improving performance in various applications, including photoelectron-catalytic research and stabilizing material activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Wei, Z.J. Xu, The comprehensive understanding of as an evaluation parameter for electrochemical water splitting. Small Methods. 2, 1800168 (2018)

    Google Scholar 

  2. L. Li, P. Wang, Q. Shao, X.J. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49, 3072–3106 (2020)

    Google Scholar 

  3. J. Wang, W. Cui, Q. Liu, Z. **ng, A.M. Asiri, X.J. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215–230 (2016)

    Google Scholar 

  4. B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C.J. Cheng, Designing MOF nanoarchitectures for electrochemical water splitting. Adv. Mater. 33, 2006042 (2021)

    Google Scholar 

  5. Z.P. Ifkovits, J.M. Evans, M.C. Meier, K.M. Papadantonakis, N.S. Lewis, Decoupled electrochemical water-splitting systems: a review and perspective. Energy Environ. Sci. 14, 4740–4759 (2021)

    Google Scholar 

  6. J. Joo, T. Kim, J. Lee, S.I. Choi, K.J. Lee, Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 31, 1806682 (2019)

    Google Scholar 

  7. C. Zhu, Q. Shi, S. Feng, D. Du, Y.J. Lin, Single-atom catalysts for electrochemical water splitting. ACS Energy Lett. 3, 1713–1721 (2018)

    Google Scholar 

  8. Y. Tan, H. Wang, P. Liu, Y. Shen, C. Cheng, A. Hirata, T. Fujita, Z. Tang, M.J.E. Chen, E. Science, Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 9, 2257–2261 (2016)

    Google Scholar 

  9. H. Zhang, A.W. Maijenburg, X. Li, S.L. Schweizer, R.B.J. Wehrspohn, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater.Funct. Mater. 30, 2003261 (2020)

    Google Scholar 

  10. Q. Hu, G. Li, Z. Han, Z. Wang, X. Huang, H. Yang, Q. Zhang, J. Liu, C. He, Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. J. Mater. Chem. 7, 14380–14390 (2019)

    Google Scholar 

  11. M. Hassan, Y. Slimani, M.A. Gondal, M.J. Mohamed, S. Güner, M.A. Almessiere, A.M. Surrati, A. Baykal, S. Trukhanov, A. Trukhanov, Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceram. Int. 48, 24866–24876 (2022)

    Google Scholar 

  12. S. Trukhanov, A. Trukhanov, V. Turchenko, A.V. Trukhanov, E. Trukhanova, D. Tishkevich, V. Ivanov, T. Zubar, M. Salem, V. Kostishyn, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018)

    Google Scholar 

  13. D. Vinnik, V. Kokovkin, V. Volchek, V. Zhivulin, P. Abramov, N. Cherkasova, Z. Sun, M. Sayyed, D. Tishkevich, A. Trukhanov, Electrocatalytic activity of various hexagonal ferrites in OER process. Mater. Chem. Phys. 270, 124818 (2021)

    Google Scholar 

  14. M. Zdorovets, A. Kozlovskiy, D. Tishkevich, T. Zubar, A. Trukhanov, The effect of do** of TiO2 thin films with low-energy O2+ ions on increasing the efficiency of hydrogen evolution in photocatalytic reactions of water splitting. J. Mater. Sci. Mater. Electron. 31, 21142–21153 (2020)

    Google Scholar 

  15. W. Li, C. Wang, X. Lu, Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. J. Mater. Chem. A. 9, 3786–3827 (2021)

    Google Scholar 

  16. M.-S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y.J.M.T. Tong, Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 20, 425–451 (2017)

    Google Scholar 

  17. J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A. Abudula, G. Guan, Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J. Alloy. Compd. 819, 153346 (2020)

    Google Scholar 

  18. A. Trukhanov, V. Turchenko, I. Bobrikov, S. Trukhanov, I. Kazakevich, A. Balagurov, Crystal structure and magnetic properties of the BaFe12− xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater.Magn. Magn. Mater. 393, 253–259 (2015)

    ADS  Google Scholar 

  19. A. Trukhanov, V. Kostishyn, L. Panina, V. Korovushkin, V. Turchenko, P. Thakur, A. Thakur, Y. Yang, D. Vinnik, E. Yakovenko, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloy. Compd. 754, 247–256 (2018)

    Google Scholar 

  20. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9, 202 (2019)

    Google Scholar 

  21. S. Li, E. Li, X. An, X. Hao, Z. Jiang, G. Guan, Transition-metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. Nanoscale 13, 12788 (2021)

    Google Scholar 

  22. J. Ying, H. Wang, Strategies for develo** transition metal phosphides in electrochemical water splitting. Front. Chem. 9, 700020 (2021)

    Google Scholar 

  23. R. Jamil, R. Ali, S. Loomba, J. **an, M. Yousaf, K. Khan, B. Shabbir, C.F. McConville, A. Mahmood, N. Mahmood, The role of nitrogen in transition-metal nitrides in electrochemical water splitting. Chem. Catal. 1, 802–854 (2021)

    Google Scholar 

  24. R. Gao, J. Zhu, D. Yan, Transition metal-based layered double hydroxides for photo (electro) chemical water splitting: a mini review. Nanoscale 13, 13593 (2021)

    Google Scholar 

  25. X. Chen, X. Wang, X. Zhang, D. Liu, K. Srinivas, F. Ma, B. Wang, B. Yu, Q. Wu, Y. Chen, Facile and scalable synthesis of heterostructural NiSe2/FeSe2 nanoparticles as efficient and stable binder-free electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 46, 35198–35208 (2021)

    Google Scholar 

  26. K. Wang, Z. Lin, Y. Tang, Z. Tang, C.-L. Tao, D.-D. Qin, Y. Tian, Selenide/sulfide heterostructured NiCo2Se4/NiCoS4 for oxygen evolution reaction, hydrogen evolution reaction, water splitting and Zn-air batteries. Electrochim. Acta 368, 137584 (2021)

    Google Scholar 

  27. X. Peng, Y. Yan, X. **, C. Huang, W. **, B. Gao, P.K. Chu, Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020)

    Google Scholar 

  28. X. **a, L. Wang, N. Sui, V.L. Colvin, W.Y. William, Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 12, 12249–12262 (2020)

    Google Scholar 

  29. X. Du, G. Ma, X. Zhang, Experimental and theoretical understanding on electrochemical activation processes of nickel selenide for excellent water-splitting performance: comparing the electrochemical performances with M-NiSe (M=Co, Cu, and V). ACS Sustain. Chem. Eng. 7, 19257–19267 (2019)

    Google Scholar 

  30. M. Das, A. Biswas, Z.B. Khan, R.S. Dey, Tuning the electronic structure of cobalt selenide on copper foam by introducing a Ni buffer layer for highly efficient electrochemical water splitting. Inorganic Chem. 61, 13218–13225 (2022)

    Google Scholar 

  31. S.S. Jayaseelan, N. Bhuvanendran, Q. Xu, H. Su, Co3O4 nanoparticles decorated polypyrrole/carbon nanocomposite as efficient bi-functional electrocatalyst for electrochemical water splitting. Int. J. Hydrogen Energy 45, 4587–4595 (2020)

    Google Scholar 

  32. L. Naderi, S. Shahrokhian, Cobalt vanadium chalcogenide microspheres decorated with dendrite-like fiber nanostructure for flexible and wire-typed energy conversion and storage micro-devices. Nanoscale 14, 9150 (2022)

    Google Scholar 

  33. K. Brijesh, K. Bindu, D. Shanbhag, H.S. Nagaraja, Chemically prepared Polypyrrole/ZnWO4 nanocomposite electrodes for electrocatalytic water splitting. Int. J. Hydrogen Energy 44, 757–767 (2019)

    Google Scholar 

  34. S. Ghosh, S.R. Keshri, S. Bera, R.N. Basu, Enhanced solar hydrogen generation using Cu–Cu2O integrated polypyrrole nanofibers as heterostructured catalysts. Int. J. Hydrogen Energy 45, 6159–6173 (2020)

    Google Scholar 

  35. K. Wu, C. Wang, X. Lang, J. Cheng, H. Wu, C. Lyu, W.-M. Lau, Z. Liang, X. Zhu, J. Zheng, Insight into selenium vacancies enhanced CoSe2/MoSe2 heterojunction nanosheets for hydrazine-assisted electrocatalytic water splitting. J. Colloid Interface Sci. 654, 1040–1053 (2024)

    Google Scholar 

  36. L. Mu, S. Qiu, G. Zhao, W. Liao, N. Zhao, X. Xu, A high-efficiency NiFeSe4/NiSe2 bifunctional electrocatalyst with outstanding oxygen evolution reaction and overall water splitting performance. J. Mater. Chem. A. 12, 1714 (2024)

    Google Scholar 

  37. S. Zhou, X. Chen, T. Li, Y. Wei, R. Sun, S. Han, J. Jiang, Heterogeneous interface engineering of cationic vacancy defects layered double hydroxides and molybdenum-nickel-based selenium compounds to facilitate overall water splitting. Fuel 357, 129732 (2024)

    Google Scholar 

  38. M. Bahrami, T. Shahrabi, Y. Yaghoubinezhad, Synergistic coupling of reduced graphene oxide with Ni0.85Se for highly active bifunctional electrocatalyst for water splitting. Int. J. Hydrogen Energy 53, 1421–1432 (2024)

    Google Scholar 

  39. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano. Sci. Eng. 2, 154–160 (2012)

    ADS  Google Scholar 

  40. I.G. Shitu, Z.A. Talib, J.L.Y. Chi, M.M.A. Kechick, H. Baqiah, Influence of tartaric acid concentration on structural and optical properties of CuSe nanoparticles synthesized via microwave assisted method. Result Phys. 17, 103041 (2020)

    Google Scholar 

  41. Y.E. Firat, A. Peksoz, Efficiently two-stage synthesis and characterization of CuSe/Polypyrrole composite thin films. J. Alloy. Compd. 727, 177–184 (2017)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Researchers Supporting Project (RSP2024R405), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All have done equal contribution.

Corresponding author

Correspondence to Muhammad Naeem Ashiq.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.I.A., Manzoor, S., Khan, M.M. et al. Development of CuSe/polypyrrole electrocatalyst for oxygen evolution reaction. Appl. Phys. A 130, 257 (2024). https://doi.org/10.1007/s00339-024-07429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07429-3

Keywords

Navigation