Log in

Nickel tungstate derived from WO3 and NiO for room temperature CO2 sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2024

This article has been updated

Abstract

The room temperature sensing of carbon dioxide (CO\(_2\)) has potential applications in diverse areas such as food industry, health care, and environmental monitoring. However, CO\(_2\) is chemically inert and room temperature detection of this gas is rare, especially using undoped binary oxides such as tungsten oxide (WO\(_3\)) and nickel oxide (NiO). This study reports on the preparation and investigation of a nickel tungstate (NiWO\(_4\)) pellet-based sensor for room temperature detection of CO\(_2\). The mixed oxide is prepared by first physically mixing NiO and WO\(_3\) and then compacting them with polyvinyl alcohol (PVA) binder using a hydraulic press. These pellets are then sintered in the solid state at 900 \(^{\circ }\hbox {C}\) for 2 h and the resultant product is structurally characterized by X-ray diffraction and scanning electron microscopy. The optical band gap is measured using UV–Vis spectroscopy in reflectance mode. The gas sensing behavior of the fabricated sensor is investigated at different concentrations of carbon dioxide (CO\(_2\)) at room temperature and measuring the change in electrical resistance. The obtained results showed that the response of the NiWO\(_4\) sensor is greatly improved when compared to its binary constituents. This can be attributed to the hetero-contacts formed in the sintered material and also the increase in porosity of the mixed oxide when compared with pure WO\(_3\). Further, the proposed mechanism that explains CO\(_2\) sensing is discussed for NiWO\(_4\) based on the formation of pp junction between the constituents. This work provides a feasible route for the efficient fabrication of NiWO\(_4\) for room temperature CO\(_2\) sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

Change history

References

  1. T. Thomas, N. Jayababu, J. Shruthi, A. Mathew, A. Cerdán-Pasarán, J.A. Hernández-Magallanes, K. Sanal, R. Reshmi, Thin Solid Films 722, 138575 (2021)

    Article  ADS  CAS  Google Scholar 

  2. S. Saini, A. Kumar, S. Ranwa, A. Tyagi, Appl. Phys. A 128, 454 (2022)

    Article  ADS  CAS  Google Scholar 

  3. A. Yadav, P. Singh, G. Gupta, Environ. Sci. Nano (2021)

  4. X. Liu, J. Zhang, T. Yang, X. Guo, S. Wu, S. Wang, Sens. Actuators B Chem. 156, 918–923 (2011)

    Article  CAS  Google Scholar 

  5. W. Noh, Y. Shin, J. Kim, W. Lee, K. Hong, S.A. Akbar, J. Park, Solid State Ion. 152, 827–832 (2002)

    Article  Google Scholar 

  6. S. Bouachma, K. Ayouz-Chebout, M. Kechouane, A. Manseri, C. Yaddadene, H. Menari, N. Gabouze, Appl. Phys. A 128, 1–13 (2022)

    Article  Google Scholar 

  7. Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu et al., Mater. Horiz. 6, 470–506 (2019)

    Article  CAS  Google Scholar 

  8. H. Ramachandran, M.M. Jahanara, N.M. Nair, P. Swaminathan, RSC Adv. 10, 3951–3959 (2020)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  9. J. Zhang, H. Lu, C. Liu, C. Chen, X. **n, RSC Adv. 7, 40499–40509 (2017)

    Article  ADS  CAS  Google Scholar 

  10. D. Feng, L. Du, X. **ng, C. Wang, J. Chen, Z. Zhu, Y. Tian, D. Yang, ACS Sens. 6, 733–741 (2021)

    Article  PubMed  CAS  Google Scholar 

  11. M.J. Mohammad, H. Ramachandran, P. Swaminathan, J. Electron. Mater. 51, 2298–2307 (2022)

    Article  ADS  CAS  Google Scholar 

  12. H. Rahman, H. Dhoundiyal, A. Kumar, M.C. Bhatnagar, Appl. Phys. A 129, 271 (2023)

    Article  ADS  CAS  Google Scholar 

  13. S.M. AlShehri, J. Ahmed, A.M. Alzahrani, T. Ahamad, New J. Chem. 41, 8178–8186 (2017)

    Article  CAS  Google Scholar 

  14. A.E. Reddy, T. Anitha, C.V.M. Gopi, S.S. Rao, H.J. Kim, Dalton Trans. 47, 9057–9063 (2018)

    Article  PubMed  CAS  Google Scholar 

  15. J. Ge, Y. Sun, W. Chen, F. Song, Y. **e, Y. Zheng, P. Rao, Dalton Trans. 50, 13801–13814 (2021)

    Article  PubMed  CAS  Google Scholar 

  16. N.A. Lima, L.D. Alencar, M. Siu-Li, C.A. Feitosa, A. Mesquita, J.C. M’peko, M.I. Bernardi, J. Adv. Ceram. 9, 55–63 (2020)

    Article  CAS  Google Scholar 

  17. M.J. Mohammad, A. Sudha, M.H. Adavalli, P. Swaminathan, Surf. Interfaces 41, 103155 (2023)

    Article  CAS  Google Scholar 

  18. B. Altun, I. Karaduman Er, A.O. Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Appl. Phys. A 127, 687 (2021)

    Article  ADS  CAS  Google Scholar 

  19. A.A. Aboud, H. Al-Kelesh, W.M. El Rouby, A.A. Farghali, A. Hamdedein, M.H. Khedr, J. Mater. Res. Technol. 7, 14–20 (2018)

    Article  CAS  Google Scholar 

  20. P.V. Shinde, N.M. Shinde, S.F. Shaikh, D. Lee, J.M. Yun, L.J. Woo, A.M. Al-Enizi, R.S. Mane, K.H. Kim, RSC Adv. 10, 17217–17227 (2020)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  21. K.S. Jian, C.J. Chang, J.J. Wu, Y.C. Chang, C.Y. Tsay, J.H. Chen, T.L. Horng, G.J. Lee, L. Karuppasamy, S. Anandan et al., Polymers 11, 184 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  22. S.T. Hung, C.J. Chang, C.H. Hsu, B.H. Chu, C.F. Lo, C.C. Hsu, S.J. Pearton, M.R. Holzworth, P.G. Whiting, N.G. Rudawski et al., Int. J. Hydrogen Energy 37, 13783–13788 (2012)

    Article  CAS  Google Scholar 

  23. I.C. Lin, C.C. Chang, C.K. Lin, S.J. Shih, C.J. Chang, C.Y. Tsay, J.B. Shi, T.L. Horng, J.H. Chen, J.J. Wu et al., J. Electroceram. 41, 28–36 (2018)

    Article  CAS  Google Scholar 

  24. S. Shanmugapriya, V. Nithya, A. Rajalakshmi, K. Sivaranjani, P. Bharathi, S. Shalini, P.R. Kasturi, R.K. Selvan, J. Mater. Sci. Mater. Electron. 31, 15616–15626 (2020)

    Article  CAS  Google Scholar 

  25. N. Kaur, D. Zappa, V.A. Maraloiu, E. Comini, Adv. Funct. Mater. 31, 2104416 (2021)

    Article  CAS  Google Scholar 

  26. S. Mani, V. Vediyappan, S.M. Chen, R. Madhu, V. Pitchaimani, J.Y. Chang, S.B. Liu, Sci. Rep. 6, 1–8 (2016)

    Article  Google Scholar 

  27. T.H. Kim, C.H. Kwak, J.H. Lee, ACS Appl. Mater. Interfaces 9, 32034–32043 (2017)

    Article  PubMed  CAS  Google Scholar 

  28. A. Sudha, A.M. Koshy, P. Swaminathan, Mater. Lett. 316, 132007 (2022)

    Article  CAS  Google Scholar 

  29. R. Pullar, S. Farrah, N.M. Alford, J. Eur. Ceram. Soc. 27, 1059–1063 (2007)

    Article  CAS  Google Scholar 

  30. J. Lv, E.C. **ao, M. Liu, X. Dong, Y. Chen, Z. Yue, Z.M. Qi, F. Shi, Mater. Chem. Phys. 251, 122861 (2020)

    Article  CAS  Google Scholar 

  31. A. Sudha, T.K. Maity, S.L. Sharma, A.N. Gupta, Mater. Sci. Semicond. Process. 74, 347–351 (2018)

    Article  CAS  Google Scholar 

  32. F. Rosal, A. Gouveia, J. Sczancoski, P. Lemos, E. Longo, B. Zhang, L. Cavalcante, Inorg. Chem. Commun. 98, 34–40 (2018)

    Article  CAS  Google Scholar 

  33. R. Talebi, J. Mater. Sci. Mater. Electron. 27, 3565–3569 (2016)

    Article  CAS  Google Scholar 

  34. S. Shepard, M. Smeu, Comput. Mater. Sci. 143, 301–307 (2018)

    Article  CAS  Google Scholar 

  35. A. Sudha, S.L. Sharma, A.N. Gupta, Sens. Actuators A Phys. 285, 378–385 (2019)

    Article  CAS  Google Scholar 

  36. A. Sudha, A. Ashok, S. Patil, S.K. Yadav, P. Swaminathan, Solar Energy 266, 112163 (2023)

    Article  ADS  CAS  Google Scholar 

  37. M. Bahar, M. Gholami, M.E. Azim-Araghi, Mater. Sci. Semicond. Process. 26, 491–500 (2014)

    Article  CAS  Google Scholar 

  38. A.I. Ayesh, B. Salah, Appl. Phys. A 127, 1–9 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by IIT Madras under the Institute of Eminence Research Initiative Project on Materials and Manufacturing for Futuristic Mobility (project no. SB/22-23/1272/MM/ETWO/008702). Raman spectroscopy was carried out at the Material Science Research Center, IIT Madras. The UV–Vis measurements were performed at the Dept. of Chemistry, IIT Madras. The XRD measurements were recorded at the Common Instruments Facility, ICSR, IIT Madras. The SEM images were recorded at the Department of Metallurgical and Materials Engineering, IIT Madras. Dr. A. Sudha would like to acknowledge IIT Madras Institute post-doctoral fellowship program for funding. The authors also express their gratitude to Sanjeev Patil for his valuable inputs and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, major data collection, and analysis were performed by AS. MJM conceptualized the problem and designed the study. MMS was involved in data collection. The first draft of the manuscript was written by AS. PS conceptualized, supervised, and validated the study and helped in review and editing of the manuscript. All authors reviewed the final manuscript.

Corresponding author

Correspondence to A. Sudha.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article title, “CO3” should have been “CO2”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudha, A., Mohammad, M.J., Solly, M.M. et al. Nickel tungstate derived from WO3 and NiO for room temperature CO2 sensing. Appl. Phys. A 130, 84 (2024). https://doi.org/10.1007/s00339-023-07241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07241-5

Keywords

Navigation