Log in

Effects of Dy3+-do** on the band-gap widening and formation of mixed cubic and monoclinic phases of Sm2O3 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We synthesized Sm2−xDyxO3 (where X = 0.00, 0.03, 0.06, 0.09, and 0.12) nanoparticles using a co-precipitation method and investigated their structural and optical properties. X-ray diffraction (XRD) results reveal that Dy3+-do** in Sm2O3 nanoparticles leads to the formation of a monoclinic polymorphic phase along with the cubic phase of Sm2O3 and its fraction increases with increasing Dy3+-do** concentration. The substitution of Dy3+ at the Sm3+ site converts the cubic Sm2O3 unit cells into distorted monoclinic Sm2−XDyXO3 unit cells. The average crystallite and nanoparticle sizes decrease with increasing Dy3+-do** concentration. Dy3+-ions act as particle size inhibitors, which is attributed to an increase in the segregation of Dy3+-dopant ions at the surface of the nanoparticles with increasing Dy3+-do** content. The peak appearing at 851 cm−1 in the Fourier transform infrared spectroscopy (FTIR) spectra confirms the formation of Sm2O3. Widening of the band gap (Eg) above the band gap of pure cubic Sm2O3 with Dy3+-do** concentration has been observed for X > 0.06, which is due to the Moss-Burstein and quantum size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Trukhanov, L. Panina, S. Trukhanov et al., Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B (2015). https://doi.org/10.1088/1674-1056/25/1/016102

    Article  Google Scholar 

  2. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn et al., High-frequency absorption properties of gallium weakly doped barium hexaferrites. Philos. Mag. 99, 585–605 (2019). https://doi.org/10.1080/14786435.2018.1547431

    Article  ADS  Google Scholar 

  3. D.A. Vinnik, A.Y. Starikov, V.E. Zhivulin et al., Changes in the structure, magnetization, and resistivity of BaFe12XTiXO19. ACS Appl. Electron. Mater. 3, 1583–1593 (2021). https://doi.org/10.1021/acsaelm.0c01081

    Article  Google Scholar 

  4. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, Phase transformations in FeCo–Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron. 32, 16694–16705 (2021). https://doi.org/10.1007/s10854-021-06226-5

    Article  Google Scholar 

  5. M.A. Darwish, T.I. Zubar, O.D. Kanafyev et al., Combined effect of microstructure, surface energy, and adhesion force on the friction of PVA/ferrite spinel nanocomposites. Nanomaterials (2022). https://doi.org/10.3390/nano12121998

    Article  Google Scholar 

  6. S.A. Khan, I. Ali, A. Hussain et al., Synthesis and characterization of composites with Y-hexaferrites for electromagnetic interference shielding applications. Magnetochemistry 8, 1–16 (2022). https://doi.org/10.3390/magnetochemistry8120186

    Article  Google Scholar 

  7. A.L. Kozlovskiy, M.V. Zdorovets, Effect of do** of Ce4+/3+ on optical, strength and shielding properties of (0.5−X)TeO2–0.25MoO–0.25Bi2O3–XCeO2 glasses. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124444

    Article  Google Scholar 

  8. A. Roy, S. Panda, J. Gupta et al., Effects of interfacial interactions on structural, optical, thermal degradation properties and photocatalytic activity of low-density polyethylene/BaTiO3 nanocomposite. Polymer 276, 125932 (2023). https://doi.org/10.1016/j.polymer.2023.125932

    Article  Google Scholar 

  9. A.M. Henaish, O.M. Hemeda, A.M. Dorgham et al., Structure and optoelectronic properties of ferroelectric PVA–PZT nanocomposites. Opt. Mater. (Amst.) 138, 113402 (2023). https://doi.org/10.1016/j.optmat.2022.113402

    Article  Google Scholar 

  10. J. Gupta, A. Kumar, A. Roy et al., Effects of interfacial interactions and nanoparticle agglomeration on the structural, thermal, optical, and dielectric properties of polyethylene/Cr2O3 and polyethylene/Cr2O3/CNTs nanocomposites. J. Inorg. Organomet. Polym. Mater. 33, 407–423 (2023). https://doi.org/10.1007/s10904-022-02508-5

    Article  Google Scholar 

  11. I. Ahmed, V. Burman, R. Biswas et al., Bifunctional electrochemical OER and HER activity of Ta2O5 nanoparticles over Fe2O3 nanoparticles. New J. Chem. (2023). https://doi.org/10.1039/d3nj02846a

    Article  Google Scholar 

  12. A. Mehtab, J. Ahmed, S.M. Alshehri et al., Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. Nanotechnology (2022). https://doi.org/10.1088/1361-6528/ac43e7

    Article  Google Scholar 

  13. S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov et al., Concentration-dependent structural transition in the La0.70Sr0.30MnO3δ system. JETP Lett. 84, 254–257 (2006). https://doi.org/10.1134/S002136400617005X

    Article  ADS  Google Scholar 

  14. A.L. Kozlovskiy, A. Alina, M.V. Zdorovets, Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. J. Mater. Sci. Mater. Electron. 32, 3863–3877 (2021). https://doi.org/10.1007/s10854-020-05130-8

    Article  Google Scholar 

  15. N.X. Duong, J.S. Bae, J. Jeon et al., Polymorphic phase transition in BaTiO3 by Ni do**. Ceram. Int. 45, 16305–16310 (2019). https://doi.org/10.1016/J.CERAMINT.2019.05.156

    Article  Google Scholar 

  16. S.V. Trukhanov, D.P. Kozlenko, A.V. Trukhanov, High hydrostatic pressure effect on magnetic state of anion-deficient La0.70Sr0.30MnOx perovskite manganites. J. Magn. Magn. Mater. 320, 91–94 (2008). https://doi.org/10.1016/j.jmmm.2008.02.021

    Article  Google Scholar 

  17. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev et al., Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 20(17), 4851 (2020). https://doi.org/10.3390/s20174851

    Article  ADS  Google Scholar 

  18. F.M. Sanakousar, C. Vidyasagar, V.M. Jiménez-Pérez, K. Prakash, Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Mater. Sci. Semicond. Process. 140, 106390 (2022). https://doi.org/10.1016/J.MSSP.2021.106390

    Article  Google Scholar 

  19. S.B. Patil, P.S. Basavarajappa, N. Ganganagappa et al., Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 44, 13022–13039 (2019). https://doi.org/10.1016/J.IJHYDENE.2019.03.164

    Article  Google Scholar 

  20. M. Iqbal, A. Ali, K.S. Ahmad et al., Synthesis and characterization of transition metals doped CuO nanostructure and their application in hybrid bulk heterojunction solar cells. SN Appl. Sci. 1, 1–8 (2019). https://doi.org/10.1007/S42452-019-0663-5

    Article  ADS  Google Scholar 

  21. S. Asaithambi, P. Sakthivel, M. Karuppaiah et al., Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J. Energy Storage 31, 101530 (2020). https://doi.org/10.1016/J.EST.2020.101530

    Article  Google Scholar 

  22. S. Rasouli, H. Milani, S. Gianluca, G. Neri, PANI/Sm2O3 nanocomposite sensor for fast hydrogen detection at room temperature. Synth. Met. 268, 116493 (2020). https://doi.org/10.1016/j.synthmet.2020.116493

    Article  Google Scholar 

  23. M.M. Antoinette, S. Israel, Synthesis and characterization of Sm2O3 nanoparticles using combustion method. Int. Res. J. Eng. Technol 4, 276–279 (2017)

    Google Scholar 

  24. B.T. Sone, E. Manikandan, A. Gurib-fakim, M. Maaza, Sm2O3 nanoparticles green synthesis via Callistemon viminalis ’ extract. J. Alloys Compd. 650, 357–362 (2015). https://doi.org/10.1016/j.jallcom.2015.07.272

    Article  Google Scholar 

  25. H. Yang, H. Wang, H.M. Luo et al., Structural and dielectric properties of epitaxial Sm2O3 thin films. Appl. Phys. Lett. 92, 062905 (2008). https://doi.org/10.1063/1.2842416

    Article  ADS  Google Scholar 

  26. E.R. Andrievskaya, O.A. Kornienko, A.V. Sameljuk, A. Sayir, Phase relation studies in the CeO2–Eu2O3 system at 1500 to 600°C in air. J. Eur. Ceram. Soc. 40, 751–758 (2020). https://doi.org/10.1016/J.JEURCERAMSOC.2019.10.045

    Article  Google Scholar 

  27. E. Olsson, Q. Cai, J. Cottom, R. Jakobsen, A.L. Shluger, Structural, elastic, vibrational and electronic properties of amorphous Sm2O3 from Ab Initio calculations. Comput. Mater. Sci. 169, 109119 (2019). https://doi.org/10.1016/j.commatsci.2019.109119

    Article  Google Scholar 

  28. C. Barad, G. Kimmel, H. Hayun et al., Phase stability of nanocrystalline grains of rare-earth oxides (Sm2O3 and Eu2O3) confined in magnesia (MgO) matrix. Materials 13, 2201 (2020). https://doi.org/10.3390/MA13092201

    Article  Google Scholar 

  29. G. Kimmel, Phase stability of rare-earth sesquioxides—new approach. Mod. Concepts Mater. Sci. 2, 4–5 (2020). https://doi.org/10.33552/mcms.2020.02.000540

    Article  Google Scholar 

  30. G. Kimmel, J. Zabicky, Stability, instability, metastability and grain size in nanocrystalline ceramic oxide systems. Solid State Phenom. 140, 29–36 (2008). https://doi.org/10.4028/www.scientific.net/SSP.140.29

    Article  Google Scholar 

  31. A. Navrotsky, Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem. Trans. 4, 34–37 (2003). https://doi.org/10.1039/b308711e

    Article  Google Scholar 

  32. S.J. Schneider, R.S. Roth, Phase equilibria in systems involving the rare-earth oxides. Part II. Solid state reactions in trivalent rare-earth oxide systems. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 64A, 317 (1960). https://doi.org/10.6028/jres.064a.031

    Article  Google Scholar 

  33. A.A. Atta, M.M. El-Nahass, K.M. Elsabawy, M.M. Abd El-Raheem, A.M. Hassanien, A. Alhuthali et al., Optical characteristics of transparent samarium oxide thin films deposited by the radio-frequency sputtering technique. Pramana 87, 1–8 (2016). https://doi.org/10.1007/s12043-016-1285-8

    Article  Google Scholar 

  34. J.F. Huang, Y. Huang, L.Y. Cao, J.P. Wu, Influence of hydrothermal reaction time on phases, morphologies and optical properties of Sm2O3 thin films. Mater. Res. Innov. 11(4), 173–176 (2007). https://doi.org/10.1179/143307507X246585

    Article  Google Scholar 

  35. M.V. Zdorovets, B.A. Prmantayeva, A.L. Kozlovskiy, Synthesis and properties of SrTiO3 ceramic doped with Sm2O3. Materials 14(24), 7549 (2021). https://doi.org/10.3390/ma14247549

    Article  ADS  Google Scholar 

  36. L.X. Yin, J.F. Huang, Y. Huang, L.Y. Cao, Orientation growth and optical properties of Sm2O3 thin films. Adv. Mater. Res. 105, 345–347 (2010). https://doi.org/10.4028/www.scientific.net/AMR.105-106.345

    Article  Google Scholar 

  37. mp-218: Sm2O3 (Cubic, Ia-3, 206). https://next-gen.materialsproject.org/materials/mp-218?formula=Sm2O3#thermodynamic_stability. Accessed 16 Sept 2023

  38. mp-1745: Sm2O3 (Monoclinic, C2/m, 12). https://next-gen.materialsproject.org/materials/mp-1745?formula=Sm2O3. Accessed 16 Sept 2023

  39. T. Ye, D. Huang, Y. Wang, Phase relationships of the CeO2–Sm2O3 system at 1200 °C to 1600 °C in air. Ceram. Int. 47, 9075–9082 (2021). https://doi.org/10.1016/J.CERAMINT.2020.12.031

    Article  Google Scholar 

  40. I. Muneer, M.A. Farrukh, S. Javaid et al., Synthesis of Gd2O3/Sm2O3 nanocomposite via sonication and hydrothermal methods and its optical properties. Superlattices Microstruct. 77, 256–266 (2015). https://doi.org/10.1016/J.SPMI.2014.10.006

    Article  ADS  Google Scholar 

  41. A.B. Panda, G. Glaspell, M. Samy El-Shall, Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides. J. Phys. Chem. C 111, 1861–1864 (2007). https://doi.org/10.1021/JP0670283

    Article  Google Scholar 

  42. J. Zeng, Z. Li, H. Peng, X. Zheng, Core-shell Sm2O3@ZnO nano-heterostructure for the visible light driven photocatalytic performance. Colloids Surf A Physicochem Eng Asp 560, 244–251 (2019). https://doi.org/10.1016/J.COLSURFA.2018.10.023

    Article  Google Scholar 

  43. J.A. Lussier, D.H.P. Souza, P.S. Whitfield, M. Bieringer, Structural competition and reactivity of rare-earth oxide phases in YxPr2xO3 (0.05 ≤ x ≤ 0.80). Inorg. Chem. 57, 14106–14115 (2018). https://doi.org/10.1021/acs.inorgchem.8b01911

    Article  Google Scholar 

  44. S. Kumar, S.B. Rai, C. Rath, Monoclinic to cubic phase transformation and photoluminescence properties in Hf1−xSmxO2 (x = 0–012) nanoparticles. J. Appl. Phys. 123, 055108 (2018). https://doi.org/10.1063/1.5016377

    Article  ADS  Google Scholar 

  45. G. Boopathi, S. Gokul Raj, G. Ramesh Kumar, R. Mohan, Structural and optical properties of Gd2xSmxO3 nanorods. Mater. Today Proc. 2, 3684–3689 (2015). https://doi.org/10.1016/J.MATPR.2015.07.129

    Article  Google Scholar 

  46. S.K. Gupta, K. Sudarshan, R.M. Kadam, Optical nanomaterials with focus on rare earth doped oxide: a review. Mater. Today Commun. 27, 102277 (2021). https://doi.org/10.1016/j.mtcomm.2021.102277

    Article  Google Scholar 

  47. M. Zikriya, Y.F. Nadaf, P.V. Bharathy, C.G. Renuka, Luminescent characterization of rare earth Dy3+ ion doped TiO2 prepared by simple chemical co-precipitation method. J. Rare Earths 37, 24–31 (2019). https://doi.org/10.1016/j.jre.2018.05.012

    Article  Google Scholar 

  48. F. Gu, S.F. Wang, M.K. Lü et al., Preparation and luminescence characteristics of nanocrystalline SnO2 particles doped with Dy3+. J. Cryst. Growth 255, 357–360 (2003). https://doi.org/10.1016/S0022-0248(03)01294-6

    Article  ADS  Google Scholar 

  49. C.O. Amor, K. Elghniji, C. Virlan et al., Effect of dysprosium ion (Dy3+) do** on morphological, crystal growth and optical properties of TiO2 particles and thin films. Phys. B Condens. Matter 560, 67–74 (2019). https://doi.org/10.1016/j.physb.2019.02.017

    Article  ADS  Google Scholar 

  50. G. Singh, M. Kaur, B. Arora, R.C. Singh, Investigation of ethanol gas sensing properties of Dy-doped SnO2 nanostructures. J. Mater. Sci. Mater. Electron. 29, 867–875 (2018). https://doi.org/10.1007/s10854-017-7982-3

    Article  Google Scholar 

  51. R.S. Ajimsha, A.K. Das, B.N. Singh et al., Structural, electrical and optical properties of Dy doped ZnO thin films grown by buffer assisted pulsed laser deposition. Phys. E Low-Dimens. Syst. Nanostruct. 42, 1838–1843 (2010). https://doi.org/10.1016/J.PHYSE.2010.02.005

    Article  ADS  Google Scholar 

  52. C. Jayachandraiah, K. Siva Kumar, G. Krishnaiah, N. Madhusudhana Rao, Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J. Alloys Compd. 623, 248–254 (2015). https://doi.org/10.1016/J.JALLCOM.2014.10.067

    Article  Google Scholar 

  53. S.J. Mofokeng, V. Kumar, R.E. Kroon, O.M. Ntwaeaborwa, Structure and optical properties of Dy3+ activated sol-gel ZnO–TiO2 nanocomposites. J. Alloys Compd. 711, 121–131 (2017). https://doi.org/10.1016/J.JALLCOM.2017.03.345

    Article  Google Scholar 

  54. P. Kumar, M. Jakhar, V. Chauhan, P.C. Pandey, Influence of Dy3+ do** concentration on crystal structure and optical absorption of SnO2 nanoparticles. Mater. Today Proc. 48, 1301–1304 (2022). https://doi.org/10.1016/J.MATPR.2021.08.337

    Article  Google Scholar 

  55. M.K. Chhina, K. Singh, Dy3+ and inherent Ti4+ activated Ca2SiO4 near white light emitting phosphors synthesized from agro-food waste ashes. Ceram. Int. 46, 9370–9379 (2020). https://doi.org/10.1016/J.CERAMINT.2019.12.195

    Article  Google Scholar 

  56. K. Mishra, S.K. Singh, A.K. Singh, S.B. Rai, Optical characteristics and charge transfer band excitation of Dy3+ doped Y2O3 phosphor. Mater. Res. Bull. 47, 1339–1344 (2012). https://doi.org/10.1016/J.MATERRESBULL.2012.03.017

    Article  Google Scholar 

  57. T.K. Anh, T.T. Huong, N.T. Huong et al., Upconversion luminescence properties of Gd2O3: Er3+ nanospheres and Gd2O3: Er3+@Silica nanocomposites. Mater. Trans. 61, 1569–1574 (2020). https://doi.org/10.2320/MATERTRANS.MT-MN2019021

    Article  Google Scholar 

  58. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci. Mater. Electron. 31, 11729–11740 (2020). https://doi.org/10.1007/s10854-020-03724-w

    Article  Google Scholar 

  59. R.E. El-Shater, H. El Shimy, S.A. Saafan et al., Fabrication of doped ferrites and exploration of their structure and magnetic behavior. Adv. Mater. (2023). https://doi.org/10.1039/d3ma00105a

    Article  Google Scholar 

  60. T. Zubar, A. Trukhanov, D. Vinnik et al., Features of the growth processes and magnetic domain structure of NiFe nano-objects. J. Phys. Chem. C 123, 26957–26964 (2019). https://doi.org/10.1021/acs.jpcc.9b06997

    Article  Google Scholar 

  61. A.L. Kozlovskiy, M.V. Zdorovets, Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J. Mater. Sci. Mater. Electron. 30, 11819–11832 (2019). https://doi.org/10.1007/s10854-019-01556-x

    Article  Google Scholar 

  62. K.A. Irshad, V. Srihari, S. Kalavathi, N.V.C. Shekar, Structural phase transition, equation of state and phase diagram of functional rare earth sesquioxide ceramics (Eu1−xLax)2O3. Sci. Rep. 101(10), 1–9 (2020). https://doi.org/10.1038/s41598-020-68400-9

    Article  Google Scholar 

  63. Y.K. Anu, A. Gaur, K.K. Haldar, Effect of oxygen vacancies, lattice distortions and secondary phase on the structural, optical, dielectric and ferroelectric properties in Cd-doped Bi2Ti2O7 nanoparticles. Mater. Res. Bull. 141, 111373 (2021). https://doi.org/10.1016/J.MATERRESBULL.2021.111373

    Article  Google Scholar 

  64. A.P. Jadhav, J.H. Oh, S.W. Park et al., Enhanced down and upconversion emission for Li+ co-doped Gd2O3: Er3+ nanostructures. Curr. Appl. Phys. (2016). https://doi.org/10.1016/j.cap.2016.08.004

    Article  Google Scholar 

  65. W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Relationship between microstrain and lattice parameter change in nanocrystalline materials. Philos. Mag. Lett. 88, 169–179 (2008). https://doi.org/10.1080/09500830701840155

    Article  ADS  Google Scholar 

  66. D. Djouadi, O. Slimi, L. Hammiche, A. Chelouche, T. Touam, Effects of (Ce, Cu) Co-do** on the structural and optical properties of ZnO aerogels synthesized in supercritical ethanol. IOP Conf. Ser. J. Phys. Conf. Ser. 987, 012008 (2018). https://doi.org/10.1088/1742-6596/987/1/012008

    Article  Google Scholar 

  67. U.K. Panigrahi, P.K. Das, R. Biswal et al., Zn do** induced enhancement of multifunctional properties in NiO nanoparticles. J. Alloys Compd. 833, 155050 (2020). https://doi.org/10.1016/J.JALLCOM.2020.155050

    Article  Google Scholar 

  68. J. Al Boukhari, A. Khalaf, R. Awad, Structural analysis and dielectric investigations of pure and rare earth elements (Y and Gd) doped NiO nanoparticles. J. Alloys Compd. 820, 153381 (2020). https://doi.org/10.1016/J.JALLCOM.2019.153381

    Article  Google Scholar 

  69. S. Kailasa, B.G. Rani, M.S. Bhargava Reddy et al., NiO nanoparticles -decorated conductive polyaniline nanosheets for amperometric glucose biosensor. Mater. Chem. Phys. 242, 122524 (2020). https://doi.org/10.1016/J.MATCHEMPHYS.2019.122524

    Article  Google Scholar 

  70. G.L. Tan, D. Tang, D. Dastan et al., Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mater. Sci. Semicond. Process. 122, 105506 (2021). https://doi.org/10.1016/J.MSSP.2020.105506

    Article  Google Scholar 

  71. N. Venkatesh, N.H. Kumar, S. Goud, D. Ravinder, P.V. Somaiah, T.A. Babu, N.V.K. Prasad, FTIR, optical, electrical and magnetic properties of Sm3+ doped Mg nano ferrites. Biointerface Res. Appl. Chem. 11(6), 15037–15050 (2021). https://doi.org/10.21203/rs.3.rs-227009/v1

    Article  Google Scholar 

  72. A.M.A.M.N.R. Awad, Tuning the structural, optical and magnetic properties of PVP—capped NiO nanoparticles by gadolinium do**. Appl. Phys. A 127, 1–15 (2021). https://doi.org/10.1007/s00339-021-04838-6

    Article  Google Scholar 

  73. B.T. Sneed, A.P. Young, C.K. Tsung, Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7, 12248–12265 (2015). https://doi.org/10.1039/C5NR02529J

    Article  ADS  Google Scholar 

  74. J. Bai, Y. Luo, C. Chen et al., Functionalization of 1D In2O3 nanotubes with abundant oxygen vacancies by rare earth dopant for ultra-high sensitive ethanol detection. Sens. Actuators B Chem. 324, 128755 (2020). https://doi.org/10.1016/J.SNB.2020.128755

    Article  Google Scholar 

  75. Z. **a, S. Guo, Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 48, 3265–3278 (2019). https://doi.org/10.1039/C8CS00846A

    Article  Google Scholar 

  76. R. Sharma, K. Yadav, Effect of lattice defects on the structural and optical properties of Ni1−XAgXO (where X = 0.0, 0.01, 0.03, 0.05, 0.10 and 0.15) nanoparticles. Appl. Phys. A Mater. Sci. Process. 124, 1–10 (2018). https://doi.org/10.1007/S00339-017-1531-Z/FIGURES/8

    Article  Google Scholar 

  77. S.N. Madhuri, K. Rukmani, Synthesis and concentration dependent tuning of PVA-Sm2O3 nanocomposite films for optoelectronic applications. Mater. Res. Express 6, 075017 (2019). https://doi.org/10.1088/2053-1591/AB1326

    Article  ADS  Google Scholar 

  78. J. Singh, A. Roychoudhury, M. Srivastava et al., A highly efficient rare earth metal oxide nanorods based platform for aflatoxin detection. J. Mater. Chem. B 1, 4493–4503 (2013). https://doi.org/10.1039/C3TB20690D

    Article  Google Scholar 

  79. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci. 402, 245–253 (2017). https://doi.org/10.1016/J.APSUSC.2017.01.021

    Article  ADS  Google Scholar 

  80. A.M. Abdallah, H. Basma, R. Awad, Preparation, characterization, and application of nickel oxide nanoparticles in glucose and lactose biosensors. Mod. Appl. Sci. 13(6), 99 (2019). https://doi.org/10.5539/mas.v13n6p99

    Article  Google Scholar 

  81. X. Wang, W. Conway, D. Fernandes et al., Kinetics of the reversible reaction of CO2(aq) with ammonia in aqueous solution. J. Phys. Chem. A 115, 6405–6412 (2011). https://doi.org/10.1021/jp108491a

    Article  Google Scholar 

  82. A.S. Hamouda, M.S. Eldien, M.F. Abadir, Carbon dioxide capture by ammonium hydroxide solution and its possible application in cement industry. Ain Shams Eng. J. 11, 1061–1067 (2020). https://doi.org/10.1016/j.asej.2020.01.001

    Article  Google Scholar 

  83. J.G. Kang, B.K. Min, Y. Sohn, Synthesis and characterization of Sm(OH)3 and Sm2O3 nanoroll sticks. J. Mater. Sci. 50, 1958–1964 (2015). https://doi.org/10.1007/S10853-014-8760-8

    Article  ADS  Google Scholar 

  84. A.V. Deepa, M. Priya, S. Suresh, Influence of Samarium oxide ions on structural and optical properties of borate glasses. Sci. Res. Essays 11(5), 57–63 (2016). https://doi.org/10.5897/SRE2015.6359

    Article  Google Scholar 

  85. V. Annapu Reddy, N.P. Pathak, R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. J. Alloys Compd. 543, 206–212 (2012). https://doi.org/10.1016/J.JALLCOM.2012.07.098

    Article  Google Scholar 

  86. V. Da, M. P, S. S, Influence of Samarium oxide ions on structural and optical properties of borate glasses. Sci. Res. Essays 11, 57–63 (2016). https://doi.org/10.5897/SRE2015.6359

    Article  Google Scholar 

  87. S.A.M. El, S. Taha, G. Said, F. Yakuphanoglu, Superlattices and microstructures controlling the structural and optical properties of nanostructured ZnO thin films by cadmium content. Superlattices Microstruct. 65, 35–47 (2014). https://doi.org/10.1016/j.spmi.2013.10.041

    Article  ADS  Google Scholar 

  88. A.S. Asyikin, M.K. Halimah, A.A. Latif et al., Physical, structural and optical properties of bio-silica borotellurite glass system doped with samarium oxide nanoparticles. J. Non Cryst. Solids 529, 119777 (2020). https://doi.org/10.1016/J.JNONCRYSOL.2019.119777

    Article  Google Scholar 

  89. A.A. Dakhel, Dielectric and optical properties of samarium oxide thin films. J. Alloys Compd. 365, 233–239 (2004). https://doi.org/10.1016/S0925-8388(03)00615-7

    Article  Google Scholar 

  90. S.K. O’Leary, S.R. Johnson, P.K. Lim, The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis. J. Appl. Phys. 82, 3334 (1998). https://doi.org/10.1063/1.365643

    Article  ADS  Google Scholar 

  91. K. Habanjar, M. Almoussawi, A.M. Abdallah, R. Awad, Physica B: physics of condensed matter magneto-optical effect of (Sm, Co) co-do** in ZnO semiconductor. Phys. B Phys. Condens. Matter 598, 412444 (2020). https://doi.org/10.1016/j.physb.2020.412444

    Article  Google Scholar 

  92. M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018). https://doi.org/10.1016/J.APSUSC.2017.11.127

    Article  ADS  Google Scholar 

  93. mp-218: Sm2O3 (cubic, Ia-3, 206). https://materialsproject.org/materials/mp-218/. Accessed 16 Sept 2023

  94. M. Dutta, J.M. Kalita, G. Wary, Optical processes and apparent increase of optical band gap in Y2O3:Eu2+ nanoparticles synthesised by a gradually-heated solution combustion method. Optik (Stuttg) 240, 166946 (2021). https://doi.org/10.1016/j.ijleo.2021.166946

    Article  ADS  Google Scholar 

  95. Z. Rossi, B. Brioual, A. Aouni, M. Diani, M. Addou, Microstructural, morphological and optical properties of sprayed thin films of indium doped gadolinium oxide (Gd2O3:In). In: E3S Web of Conferences, vol. 336 (EDP Sciences, 2022), p. 00041. https://doi.org/10.1051/e3sconf/202233600041

  96. X. Yong, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000). https://doi.org/10.2138/am-2000-0416

    Article  ADS  Google Scholar 

  97. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, The relationship between refractive index-energy gap and the film thickness effect on the characteristic parameters of CdSe thin films. Opt. Commun. 284(9), 2307–2311 (2011). https://doi.org/10.1016/j.optcom.2010.12.094

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Central Instrumentation Laboratory (CIL) and Department of Physics, Central University of Punjab, Bathinda-151401 for providing the infrastructure and laboratory facilities.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

RS and AR: Conceptualization, Investigation, Formal analysis, Validation, Visualization, Writing of the original draft. AK, Anu, Deeksha, PK, RPS: Conceptualization, Investigation, Validation, Visualization, Writing—review and editing. KY: Supervision, Conceptualization, Investigation, Writing—review and editing, Validation, Visualization.

Corresponding author

Correspondence to Kamlesh Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sain, R., Roy, A., Kumar, A. et al. Effects of Dy3+-do** on the band-gap widening and formation of mixed cubic and monoclinic phases of Sm2O3 nanoparticles. Appl. Phys. A 129, 804 (2023). https://doi.org/10.1007/s00339-023-07051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07051-9

Keywords

Navigation