Log in

MoS2/PEDOT:PSS nanocomposite films for deep UV sensing: role of the radiation-induced trap** and localization of charges

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the negative photoresponse or decreasing of current in nanocomposite film (NCF) based on poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) and molybdenum disulphide (MoS2) under deep UV (DUV) illumination. A reduction in the negative photoresponse may be shown after a critical concentration of MoS2 when studying the response by altering the MoS2 concentration in NCF. This uncommon behaviour concerns the localization and trap** of charges brought on by radiation. For the creation of MoS2 nanosheets, the hydrothermal technique is utilized. The structural characteristics of NCF are studied by X-ray diffraction. The bandgap difference brought on by the MoS2 addition is visible using UV spectroscopy. To understand the vibrational characteristics of produced samples, FT-IR investigations were also conducted. These will enable the use of NCF material in electrical, optical, and optoelectric devices. The results of this work broaden the range of viable DUV photodetectors materials and may lead to new directions in the investigation of the photoresponse of NCF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. J. Chen, Y. Zhou, Y. Fu, J. Pan, O.F. Mohammed, O.M. Bakr, Chem. Rev. 121, 12112 (2021)

    Google Scholar 

  2. Q. Qiu, Z. Huang, Adv. Mater. 33, 1 (2021)

    Google Scholar 

  3. P.O. Nyangaresi, Y. Qin, G. Chen, B. Zhang, Y. Lu, L. Shen, Water Res. 147, 331 (2018)

    Google Scholar 

  4. H. Alamoudi, B. **n, S. Mitra, M.N. Hedhili, S. Venkatesh, D. Almalawi, N. Alwadai, Z. Alharbi, A. Subahi, I.S. Roqan, Appl. Phys. Lett. 120, 122102 (2022)

    ADS  Google Scholar 

  5. H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, X. Du, ACS Photonics 6, 351 (2019)

    Google Scholar 

  6. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photonics 4, 611 (2010)

    ADS  Google Scholar 

  7. W. Bao, L. **g, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S.B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, C.N. Lau, Nat. Phys. 7, 948 (2011)

    Google Scholar 

  8. C. Ataca, H. Şahin, S. Ciraci, J. Phys. Chem. C 116, 8983 (2012)

    Google Scholar 

  9. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    ADS  Google Scholar 

  10. J. **ao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Chem. Mater. 22, 4522 (2010)

    Google Scholar 

  11. F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Nano Lett. 13, 668 (2013)

    ADS  Google Scholar 

  12. D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, ACS Nano 7, 4879 (2013)

    Google Scholar 

  13. Z. Yin, X. Zhang, Y. Cai, J. Chen, J.I. Wong, Y.Y. Tay, J. Chai, J. Wu, Z. Zeng, B. Zheng, H.Y. Yang, H. Zhang, Angew. Chem. Int. Ed. 53, 12560 (2014)

    Google Scholar 

  14. E. Sensors, Molecules 24, 3374 (2019)

    Google Scholar 

  15. M.S. Ramasamy, K.Y. Ryu, J.W. Lim, A. Bibi, H. Kwon, J.E. Lee, D.H. Kim, K. Kim, Nanomaterials 9, 1328 (2019)

    Google Scholar 

  16. A.K. Thakur, R.B. Choudhary, M. Majumder, G. Gupta, M.V. Shelke, J. Electroanal. Chem. 782, 278 (2016)

    Google Scholar 

  17. A. Abun, B.R. Huang, A. Saravanan, D. Kathiravan, P. Da Hong, J. Alloys Compd. 832, 155005 (2020)

    Google Scholar 

  18. P. Raj, M.H. Oh, K. Han, T.Y. Lee, Chemosensors 9, 1 (2021)

    ADS  Google Scholar 

  19. D. Zhang, Y. Sun, P. Li, Y. Zhang, A.C.S. Appl, Mater. Interfaces 8, 14142 (2016)

    Google Scholar 

  20. Y. Tang, Q. Luo, Y. Chen, K. Xu, (2023).

  21. B.Z. Lin, C. Ding, B.H. Xu, Z.J. Chen, Y.L. Chen, Mater. Res. Bull. 44, 719 (2009)

    Google Scholar 

  22. E. Benavente, M.A.S. Ana, G. González, Phys. Status Solidi Basic Res. 241, 2444 (2004)

    ADS  Google Scholar 

  23. T. Wang, W. Liu, J. Tian, X. Shao, D. Sun, Polym. Compos. 25, 111 (2004)

    Google Scholar 

  24. K. Zhou, J. Liu, W. Zeng, Y. Hu, Z. Gui, Compos. Sci. Technol. 107, 120 (2015)

    Google Scholar 

  25. J. Wang, Z. Wu, H. Yin, W. Li, Y. Jiang, RSC Adv. 4, 56926 (2014)

    ADS  Google Scholar 

  26. S. Lukman, L. Ding, L. Xu, Y. Tao, A. C. Riis-jensen, G. Zhang, Q. Yang, S. Wu, M. Yang, S. Luo, C. Hsu, L. Yao, G. Liang, H. Lin, Y. Zhang, K. S. Thygesen, Q. J. Wang, Nat. Nanotechnol. (n.d.).

  27. G. Harikrishnan, S. Vempati, K.N. Prajapati, K. Bandopadhyay, V. Kalathingal, J. Mitra, Nanoscale Adv. 1, 2435 (2019)

    ADS  Google Scholar 

  28. E.G. Kim, J.L. Brédas, J. Am. Chem. Soc. 130, 16880 (2008)

    Google Scholar 

  29. K.E. Aasmundtveit, E.J. Samuelsen, L.A.A. Pettersson, O. Inganäs, T. Johansson, R. Feidenhans’l, Synth. Met. 101, 561 (1999)

    Google Scholar 

  30. S. Zhang, P. Kumar, A.S. Nouas, L. Fontaine, H. Tang, F. Cicoira, APL Mater 3, 014911 (2015)

    ADS  Google Scholar 

  31. H. Yano, K. Kudo, K. Marumo, H. Okuzaki, Sci. Adv. 5, 1 (2019)

    Google Scholar 

  32. N. Kim, B.H. Lee, D. Choi, G. Kim, H. Kim, J.R. Kim, J. Lee, Y.H. Kahng, K. Lee, Phys. Rev. Lett. 109, 1 (2012)

    Google Scholar 

  33. K. Arjun, B. Karthikeyan, Appl. Phys. A Mater. Sci. Process. 128, 1 (2022)

    Google Scholar 

  34. N. Illyaskutty, S. Sreedhar, G.S. Kumar, H. Kohler, M. Schwotzer, C. Natzeck, V.P.M. Pillai, Nanoscale 6, 13882 (2014)

    ADS  Google Scholar 

  35. H. Miao, X. Hu, Q. Sun, Y. Hao, H. Wu, D. Zhang, J. Bai, E. Liu, J. Fan, X. Hou, Mater. Lett. 166, 121 (2016)

    Google Scholar 

  36. M. Mahdavi, S. Kimiagar, F. Abrinaei, Crystals 10, 164 (2020)

    Google Scholar 

  37. M. Fawzi, 2D Mater (2018).

  38. K. Zhou, Y. Zhu, X. Yang, J. Zhou, C. Li, ChemPhysChem 13, 699 (2012)

    Google Scholar 

  39. Y. Wang, J.Z. Ou, S. Balendhran, A.F. Chrimes, M. Mortazavi, D.D. Yao, M.R. Field, K. Latham, V. Bansal, J.R. Friend, S. Zhuiykov, N.V. Medhekar, M.S. Strano, K. Kalantar-Zadeh, ACS Nano 7, 10083 (2013)

    Google Scholar 

  40. K. Zhou, S. Jiang, C. Bao, L. Song, B. Wang, G. Tang, Y. Hu, Z. Gui, RSC Adv. 2, 11695 (2012)

    ADS  Google Scholar 

  41. E.G.D.S. Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Adv. Energy Mater. 4, 1 (2014)

    Google Scholar 

  42. W.C. Chen, C.L. Liu, C.T. Yen, F.C. Tsai, C.J. Tonzola, N. Olson, S.A. Jenekhe, Macromolecules 37, 5959 (2004)

    ADS  Google Scholar 

  43. S. **ong, L. Zhang, X. Lu, Polym. Bull. 70, 237 (2013)

    Google Scholar 

  44. S. Tzavalas, V.G. Gregoriou, Vib. Spectrosc. 51, 39 (2009)

    Google Scholar 

  45. J. Diani, K. Gall, Society 1 (2006).

  46. K. Xu, J. Micromech. Microeng. 31, 054001 (2021)

    ADS  Google Scholar 

  47. Y. Gao, J. Xu, S. Shi, H. Dong, Y. Cheng, C. Wei, X. Zhang, S. Yin, L. Li, A.C.S. Appl, Mater. Interfaces 10, 11269 (2018)

    Google Scholar 

  48. A. Sharma, B. Bhattacharyya, A.K. Srivastava, T.D. Senguttuvan, S. Husale, Sci. Rep. 6, 1 (2016)

    Google Scholar 

  49. J.H. Lin, J.J. Zeng, Y.C. Su, Y.J. Lin, Appl. Phys. Lett. 100, 201902 (2012)

    ADS  Google Scholar 

  50. J. Yoo, J. Pyo, J.H. Je, Nanoscale 6, 3557 (2014)

    ADS  Google Scholar 

  51. H.P. Lin, X.J. Lin, D.C. Perng, Appl. Phys. Lett. 112, 3 (2018)

    Google Scholar 

  52. Y.C. Wu, C.H. Liu, S.Y. Chen, F.Y. Shih, P.H. Ho, C.W. Chen, C. Te Liang, W.H. Wang, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  53. S. Jeon, S.E. Ahn, I. Song, C.J. Kim, U.I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, K. Kim, Nat. Mater. 11, 301 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

The author Arjun. K thanks the Ministry of Human Resource Development (MHRD), India, for granting the JRF to carry out this work. The author would be grateful to the National Institute Of technology Tiruchirappalli for the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Karthikeyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1095 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjun, K., Karthikeyan, B. MoS2/PEDOT:PSS nanocomposite films for deep UV sensing: role of the radiation-induced trap** and localization of charges. Appl. Phys. A 129, 543 (2023). https://doi.org/10.1007/s00339-023-06766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06766-z

Keywords

Navigation