Log in

Response surface method optimization of synthesized superparamagnetic magnetite (Fe3O4) nanoparticles characterized by pulsed IR calibration-free laser-induced breakdown spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles (Fe3O4) are the subject of numerous investigations, particularly regarding synthesis conditions. In this study, we used the Response Surface Method (RSM) to optimize Fe3O4 synthesis conditions by modifying the concentration of iron salts, oxidizing medium and reaction temperature. The samples were characterized by Field Emission Scanning Electron Microscope (FESEM), Vibrating Sample Magnetometer (VSM), X-ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). Ten experimental runs with two independent variables and one categorical variable were proposed using the three-level-three-factor design. The results were statistically analyzed using ANOVA. The analysis confirmed that the response variables were significantly influenced by factors A (concentration of iron), B (concentration of the alkaline), A2, and B2 with a p value less than 0.05. In this work, the Adequate Precision i.e., the signal-to-noise ratio, which should be more than four, were 20.50 and 24.48 for both models indicating an adequate signal to explore the design space. The optimized condition for the smallest particle size with the highest saturation magnetization of 60 emu/g was determined using 0.012 M of iron salts, 0.9 M of an alkaline medium concentration, and a reaction temperature of 70 °C. The mean particle size of nanoparticles was about 9.8 ± 1 nm using the Digitizer Image Analysis software. The calibration-free laser-induced breakdown spectroscopy (CF-LIBS) indicated the plasma temperature was about 5000 ± 200 K, obtained from the slope of the Boltzmann plot and an optimal iron/oxygen ratio of 0.769. This research effectively connects the data obtained by RSM with C-F LIBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. O.H. Nielsen, C. Soendergaard, M.E. Vikner, G. Weiss, Rational management of iron-deficiency anaemia in inflammatory bowel disease. Nutrients 10, 82 (2018). https://doi.org/10.3390/nu10010082

    Article  Google Scholar 

  2. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14, 15977–16009 (2013). https://doi.org/10.3390/ijms140815977

    Article  Google Scholar 

  3. K. Thanigai Arul, E. Manikandan, P. Murmu, J. Kennedy, M. Henini, Enhanced magnetic properties of polymer-magnetic nanostructures synthesized by ultrasonication. J. Alloys Compd. 720, 395–400 (2017). https://doi.org/10.1016/j.jallcom.2017.05.146

    Article  Google Scholar 

  4. G.V. Williams, T. Prakash, J. Kennedy, S. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Mag. Mag. Mat. 460, 229–233 (2018). https://doi.org/10.1016/j.jmmm.2018.04.017

    Article  ADS  Google Scholar 

  5. T. Prakash, G.V. Williams, J. Kennedy, S. Rubanov, High spin-dependent tunneling magnetoresistance in magnetite powders made by arc-discharge. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4963293

    Article  Google Scholar 

  6. M. Răcuciu, Synthesis protocol influence on aqueous magnetic fluid properties. Curr. Appl. Phys. 9, 1062–1066 (2009). https://doi.org/10.1016/j.cap.2008.12.003

    Article  ADS  Google Scholar 

  7. M. Mahmoudi, A. Simchi, M. Imani, A.S. Milani, P. Stroeve, Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J. Phys. Chem. B 112, 14470–14481 (2008). https://doi.org/10.1021/jp803016n

    Article  Google Scholar 

  8. R. De Palma, C. Liu, F. Barbagini, G. Reekmans, K. Bonroy, W. Laureyn, G. Borghs, G. Maes, Magnetic particles as labels in bioassays: interactions between a biotinylated gold substrate and streptavidin magnetic particles. J. Phys. Chem. C 111, 12227–12235 (2007). https://doi.org/10.1021/jp0725681

    Article  Google Scholar 

  9. H.-Y. Park, M.J. Schadt Wang, I.-I.S. Lim, P.N. Njoki, S.H. Kim, M.-Y. Jang, J. Luo, C.-J. Zhong, Fabrication of magnetic Core@Shell Fe Oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23, 9050–9056 (2007). https://doi.org/10.1021/la701305f

    Article  Google Scholar 

  10. H. Mamiya, H. Fukumoto, J.L. CuyaHuaman, K. Suzuki, H. Miyamura, J. Balachandran, Estimation of magnetic anisotropy of individual magnetite nanoparticles for magnetic hyperthermia. ACS Nano 14, 8421–8432 (2020). https://doi.org/10.1021/acsnano.0c02521

    Article  Google Scholar 

  11. M.E. Khosroshahi, L. Ghazanfari, Physicochemical characterization of Fe3O4/SiO2/Au multilayer nanostructure. Mat. Chem. Phys. 133, 55–62 (2012)

    Article  Google Scholar 

  12. E.I. Anastasova, A.Y. Prilepskii, A.F. Fakhardo, A.S. Drozdov, V.V. Vinogradov, Magnetite nanocontainers: toward injectable highly magnetic materials for targeted drug delivery. ACS Appl. Mat. Interf. 10, 30040–30044 (2018). https://doi.org/10.1021/acsami.8b10129

    Article  Google Scholar 

  13. M.E. Khosroshahi, L. Ghazanfari, Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid. J. Mag. Mag. Mat. 324, 4143–4146 (2012). https://doi.org/10.1016/j.jmmm.2012.07.025

    Article  ADS  Google Scholar 

  14. R.K. Dey, T. Patnaik, V.K. Singh, S.K. Swain, C. Airoldi, Attachment of linear poly(amido amine) to silica surface and evaluation of metal-binding behavior. Appl. Surf. Sci. 255, 8176–8182 (2009). https://doi.org/10.1016/j.apsusc.2009.05.037

    Article  ADS  Google Scholar 

  15. Y. Huaccallo-Aguilar, S. Álvarez-Torrellas, J. Martínez-Nieves, J. Delgado-Adámez, M.V. Gil, G. Ovejero, J. García, Magnetite-based catalyst in the catalytic wet peroxide oxidation for different aqueous matrices spiked with naproxen-diclofenac mixture. Catalysts 11, 514 (2021). https://doi.org/10.3390/catal11040514

    Article  Google Scholar 

  16. D.P. Kozlenko, L.S. Dubrovinsky, S.E. Kichanov, E.V. Lukin, V. Cerantola, A.I. Chumakov, B.N. Savenko, Magnetic and electronic properties of magnetite across the high pressure anomaly. Sci. Rep. 9, 4464 (2019). https://doi.org/10.1038/s41598-019-41184-3

    Article  ADS  Google Scholar 

  17. P. Nadoll, T. Angerer, J.L. Mauk, D. French, J. Walshe, The chemistry of hydrothermal magnetite: a review. Ore Geol. Rev. 61, 1–32 (2014). https://doi.org/10.1016/j.oregeorev.2013.12.013

    Article  Google Scholar 

  18. J.A. Fuentes-García, A.C. Alavarse, A.C.M. Maldonado, A. Toro-Córdova, M.R. Ibarra, G.F. Goya, Simple sonochemical method to optimize the heating efficiency of magnetic nanoparticles for magnetic fluid hyperthermia. ACS Omega 5, 26357–26364 (2020). https://doi.org/10.1021/acsomega.0c02212

    Article  Google Scholar 

  19. F. Yazdani, M. Seddigh, Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mat. Chem. Phys. 184, 318–323 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.058

    Article  Google Scholar 

  20. M.E. Khosroshahi, L. Ghazanfari, Preparation and characterization of silica-coated iron-oxide bionanoparticles under N2 gas. Phys. E Low-dimensional Syst. Nanostruct. 42, 1824–1829 (2010). https://doi.org/10.1016/j.physe.2010.01.042

    Article  ADS  Google Scholar 

  21. K. Rusevova, F. Kopinke, A. Geori, Nano-sized magnetic iron oxides as catalyste for heterogeneous Fenton-like reactions-influence of Fe(II) and Fe(III) ratio on catalystic performance. J. Hazar. Mat. 241–242, 433–440 (2012). https://doi.org/10.1016/jhazmat.2012.09.068

    Article  Google Scholar 

  22. A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y. Rui, Nanoparticles: synthesis, characterization and diverse applications. Front Chem. 9, 1–25 (2021). https://doi.org/10.3389/fchem.2021.629054

    Article  Google Scholar 

  23. V. Chaudhary, R. Chaudhary, Magnetic Nanoparticles: synthesis, functionalization, and applications in encyclopedia of nanoscience and nanotechnology, vol. 28 (American Scientific Publisher, Valencia, 2018), pp.153–183. (ed. By H.S. Nalwa)

    Google Scholar 

  24. J.-P. Jolivet, C. Froidefond, A. Pottier, C. Chanéac, S. Cassaignon, E. Tronca, P. Euzenb, Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J. Mat. Chem. 14, 3281–3288 (2004). https://doi.org/10.1039/B407086K

    Article  Google Scholar 

  25. M. Tajabadi, M.E. Khosroshahi, S. Bonakdar, An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surf. A Physicochem. Eng. Aspects. 431, 18–26 (2013). https://doi.org/10.1016/j.colsurfa.2013.04.003

    Article  Google Scholar 

  26. J. Baumgartner, A. Dey, P.H.H. Bomans, C.L. Coadou, P. Fratzl, N.A.J.M. Sommerdijk, D. Faivre, Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013). https://doi.org/10.1038/nmat3558

    Article  ADS  Google Scholar 

  27. M.D. Carvalho, F. Henriques, L.P. Ferreira, M. Godinho, M.M. Cruz, Iron oxide nanoparticles: the influence of synthesis method and size on composition and magnetic properties. J. Solid-State Chem. 201, 144–152 (2013). https://doi.org/10.1016/j.jssc.2013.02.024

    Article  ADS  Google Scholar 

  28. B. Shahrokhi, M. Pirdashti, M. Managhebi, Response surface methodology for the evaluation of magnetite partitioning behavior in polyethylene glycol-based aqueous biphasic system. Iran. J. Sci. Tech. Trans. A Sci. 43, 2807–2813 (2019). https://doi.org/10.1007/s40995-019-00767-5

    Article  Google Scholar 

  29. Z. Ayazi, Z.M. Khoshhesab, S. Norouzi, Modeling and optimizing of adsorption removal of Reactive Blue 19 on the magnetite/graphene oxide nanocomposite via response surface methodology. Desalin. Water Treat. 57, 25301–25316 (2016). https://doi.org/10.1080/19443994.2016.1157705

    Article  Google Scholar 

  30. P. Zheng, H. Zhao, J. Wang, R. Liu, N. Ding, X. Maoa, C. Laia, Detection and separation of Fe(ii) and Fe(iii) in aqueous solution by laser-induced breakdown spectroscopy coupled with chelating resin enrichment and pH value adjustment. J. Anal. At. Spectrom. 35, 032–038 (2020). https://doi.org/10.1039/D0JA00292E

    Article  Google Scholar 

  31. H.R. Griem, Plasma spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  32. W. Lochte-Holtgreven, J. Richter, Plasma diagnostics (North-Holland Pub. Co., Amsterdam, 1998)

    Google Scholar 

  33. U. Fantz, Basics of plasma spectroscopy. Plasma Sources Sci. Technol. 15, S137 (2006). https://doi.org/10.1088/0963-0252/15/4/S01

    Article  ADS  Google Scholar 

  34. Y. Lee, S.W. Oh, S.-H. Han, Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the sub-parts per million level in water. Appl. Spectrosc. 66, 1385–1396 (2012). https://doi.org/10.1366/12-06639R

    Article  ADS  Google Scholar 

  35. S.K. Sharma, A.K. Misra, P.G. Lucey, R.C.F. Lentz, A combined remote Raman and LIBS instrument for characterizing minerals with 532nm laser excitation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 73, 468–476 (2009). https://doi.org/10.1016/j.saa.2008.08.005

    Article  ADS  Google Scholar 

  36. A.M. El Sherbini, A.A.S. Al Aamer, Measurement of plasma parameters in laser-Induced breakdown spectroscopy using Si-lines. World J. Nano Sci. Eng. 2, 6 (2012). https://doi.org/10.4236/wjnse.2012.24028

    Article  Google Scholar 

  37. R.J. Lasheras, C. Bello-Gálvez, J.M. Anzano, Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard. Spectrochim. Acta B: At. Spectrosc. 82, 65–70 (2013). https://doi.org/10.1016/j.sab.2013.01.005

    Article  ADS  Google Scholar 

  38. M. Tajabadi, M.E. Khosroshahi, Effect of alkaline media concentration and modification of temperature on magnetite synthesis method using FeSO4/NH4OH. Int. J. Chem. Eng. Appl. 3, 206–210 (2012). https://doi.org/10.7763/IJCEA.2012.V3.187

    Article  Google Scholar 

  39. M.E. Khosroshahi, L. Ghazanfari, Synthesis and functionalization of SiO2 coated Fe3O4 nanoparticles with amine groups based on self-assembly. Mater. Sci. Eng. C 32, 1043–1049 (2012). https://doi.org/10.1016/j.msec.2011.09.003

    Article  Google Scholar 

  40. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura, H.E. Toma, Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210–217 (2004). https://doi.org/10.1016/j.jmmm.2004.01.094

    Article  ADS  Google Scholar 

  41. R.D. Ambashta, P.K. Wattal, S. Singh, D. Bahadur, Nano-aggregates of hexacyanoferrate (II)-loaded magnetite for removal of cesium from radioactive wastes. J. Magn. Magn. Mater. 267, 335–340 (2003). https://doi.org/10.1016/S0304-8853(03)00401-3

    Article  ADS  Google Scholar 

  42. D. Xue, G. Chai, X. Li, X. Fan, Effects of grain size distribution on coercivity and permeability of ferromagnets. J. Magn. Magn. Mater. 320, 1541–1543 (2008). https://doi.org/10.1016/j.jmmm.2008.01.004

    Article  ADS  Google Scholar 

  43. Y. Wen-Guang, Z. Tong-Lai, Q. **ao-**g, Z. Jian-Guo, Y. Li, Effects of synthetical conditions on octahedral magnetite nanoparticles. Mater. Sci. Eng. B 136, 101–105 (2007). https://doi.org/10.1016/j.mseb.2006.08.030

    Article  Google Scholar 

  44. M. Kumari, S.K. Gupta, Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)—an endeavor to diminish probable cancer risk. Sci. Rep. 9, 18339 (2019). https://doi.org/10.1038/s41598-019-54902-8

    Article  ADS  Google Scholar 

  45. B.H. Hui, M.N. Salimi, Production of iron oxide nanoparticles by co-precipitation method with optimization studies of processing temperature, pH and stirring rate. IOP Conf. Series Mat. Sci. Eng. 743, 012036 (2020). https://doi.org/10.1088/1757-899x/743/1/012036

    Article  Google Scholar 

  46. S. P.Schwaminger, C. Syhr, S. Berensmeier, Controlled synthesis of magnetic iron oxide nanoparticles: magnetite or maghemite? Crystals, 10, 214 (2020) https://www.mdpi.com/2073-4352/10/3/214.

  47. M.A. Dheyab, A.A. Aziz, M.S. Jameel, Synthesis and optimization of the sonochemical method for functionalizing gold shell on Fe3O4 core nanoparticles using response surface methodology. Surf. Interfaces 21, 100647 (2020). https://doi.org/10.1016/j.surfin.2020.100647

    Article  Google Scholar 

  48. N. Mizutani, T. Iwasaki, S. Watano, Response surface methodology study on magnetite nanoparticle formation under hydrothermal conditions. Nanomater. Nanotechnol. 5, 13 (2015). https://doi.org/10.5772/60649

    Article  Google Scholar 

  49. K. Singh, D.S. Chopra, D. Singh, N. Singh, Optimization and ecofriendly synthesis of iron oxide nanoparticles as potential antioxidant. Arab. J. Chem. 13, 9034–9046 (2020). https://doi.org/10.1016/j.arabjc.2020.10.025

    Article  Google Scholar 

  50. N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of Nnucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014). https://doi.org/10.1021/cr400544s

    Article  Google Scholar 

  51. D.V. Alexandrov, A.A. Ivanov, I.V. Alexandrova, The influence of Brownian coagulation on the particle-size distribution function in supercooled melts and supersaturated solutions. J. Phys. A Math. Theor. 52, 015101 (2018). https://doi.org/10.1088/1751-8121/aaefdc

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. M. Niederberger, H. Cölfen, Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8, 3271–3287 (2006). https://doi.org/10.1039/B604589H

    Article  Google Scholar 

  53. H. Rashid, M.A. Mansoor, B. Haider, R. Nasir, S.B.A. Hamid, A. Abdulrahman, Synthesis and characterization of magnetite nano particles with high selectivity using in-situ precipitation method. Sep. Sci. Technol. 55, 1207–1215 (2020). https://doi.org/10.1080/01496395.2019.1585876

    Article  Google Scholar 

  54. I. Nyirő-Kósa, D.C. Nagy, M. Pósfai, Size and shape control of precipitated magnetite nanoparticles. Eur. J. Mineral. 21, 293–302 (2009). https://doi.org/10.1127/0935-1221/2009/0021-1920

    Article  ADS  Google Scholar 

  55. B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004). https://doi.org/10.1021/cr030027b

    Article  Google Scholar 

  56. D. Forge, A. Roch, S. Laurent, H. Tellez, Y. Gossuin, F. Renaux, L.V. Elst, R.N. Muller, Optimization of the synthesis of superparamagnetic contrast agents by the design of experiments method. J. Phys. Chem. C 112, 19178–19185 (2008). https://doi.org/10.1021/jp803832k

    Article  Google Scholar 

  57. M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 7, 1–37 (2010). https://doi.org/10.1007/BF03245856

    Article  Google Scholar 

  58. J. Wang, T. Deng, Y. Dai, Study on the processes and mechanism of the formation of Fe3O4 at low temperature. J. Alloys Compd. 390, 127–132 (2005). https://doi.org/10.1016/j.jallcom.2004.06.101

    Article  Google Scholar 

  59. K. Nishio, M. Ikeda, N. Gokon, S. Tsubouchi, H. Narimatsu, Y. Mochizuki, S. Sakamoto, A. Sandhu, M. Abe, H. Handa, Preparation of size-controlled (30–100 nm) magnetite nanoparticles for biomedical applications. J. Magn. Magn. Mater. 310, 2408–2410 (2007). https://doi.org/10.1016/j.jmmm.2006.10.795

    Article  ADS  Google Scholar 

  60. T. Hosono, H. Takahashi, A. Fujita, R.J. Joseyphus, K. Tohji, B. Jeyadevan, Synthesis of magnetite nanoparticles for AC magnetic heating. J. Magn. Magn. Mater. 321, 3019–3023 (2009). https://doi.org/10.1016/j.jmmm.2009.04.061

    Article  ADS  Google Scholar 

  61. D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225, 30–36 (2001). https://doi.org/10.1016/S0304-8853(00)01224-5

    Article  ADS  Google Scholar 

  62. G. Picard, F. Seon, B. Tremillon, Reactions of formation and stability of iron (II) and (III) oxides in LiCl-KCl eutectic melt at 470°C. J. Electrochem. Soc. 129, 1450–1460 (1982). https://doi.org/10.1149/1.2124183

    Article  ADS  Google Scholar 

  63. H.-C. Roth, S.P. Schwaminger, M. Schindler, F.E. Wagner, S. Berensmeier, influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: a model based study. J. Magn. Magn. Mater. 377, 81–89 (2015). https://doi.org/10.1016/j.jmmm.2014.10.074

    Article  ADS  Google Scholar 

  64. G. Perez, M.P. Romero, E.B. Saitovitch, F.J. Litterst, J.F.D.F. Araujo, D.C. Bell, G. Solorzano, Alkali concentration effects on the composition, morphology and magnetic properties of magnetite, maghemite and iron oxyhydroxide nanoparticles. Solid State Sci. 106, 106295 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106295

    Article  Google Scholar 

  65. R.K. Wardani, K. Dahlan, S.T. Wahyudi, S.G. Sukaryo, Synthesis and characterization of nanoparticle magnetite for biomedical application. AIP Conf. Proc. 2194, 020137 (2019). https://doi.org/10.1063/1.5139869

    Article  Google Scholar 

  66. M.C. Mascolo, Y. Pei, T.A. Ring, Room Temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6, 5549–5567 (2013). https://doi.org/10.3390/ma6125549

    Article  ADS  Google Scholar 

  67. B. Feng, R.Y. Hong, L.S. Wang, L. Guo, H.Z. Li, J. Ding, Y. Zheng, D.G. Wei, Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf. A Physicochem. Eng. Asp. 328, 52–59 (2008). https://doi.org/10.1016/j.colsurfa.2008.06.024

    Article  Google Scholar 

  68. A.M. ElNahraw, B. Hemdan, A. Mansour, A. Elzwawy, A. AbouHammad, Integrated use of nickel cobalt aluminoferrite/Ni2+ nano-crystallites supported with SiO2 for optomagnetic and biomedical applications. Mat. Sci. Eng. B 274, 115491 (2021). https://doi.org/10.1016/j.mseb.2021.115491

    Article  Google Scholar 

  69. Z.L. Liu, Y.J. Liu, K.L. Yao, Z.H. Ding, J. Tao, X. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. J. Mater. Syn. Proc. 10, 83–87 (2002). https://doi.org/10.1023/A:1021231527095

    Article  Google Scholar 

  70. N.A. Al-Shabib, F.M. Husain, F. Ahmed, R.A. Khan, M.S. Khan, F.A. Ansari, M.Z. Alam, M.A. Ahmed, S.A. Shahzad, M. Arshad, A. Alyousef, I. Ahmad, Low temperature Synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria. Front. Microbiol. 9, 2567 (2018). https://doi.org/10.3389/fmicb.2018.02567

    Article  Google Scholar 

  71. H. Fatima, T. Charinpanitkul, K.-S. Kim, Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials 11, 1203 (2021). https://doi.org/10.3390/nano11051203

    Article  Google Scholar 

  72. S.A. Davari, S. Hu, D. Mukherjee, Calibration-free quantitative analysis of elemental ratios in intermetallic nanoalloys and nanocomposites using laser induced breakdown spectroscopy (LIBS). Talanta 164, 330–340 (2017). https://doi.org/10.1016/j.talanta.2016.11.031

    Article  Google Scholar 

  73. A. Kramida, Yu. Ralchenko, J. Reader (NIST ASD Team), NIST Atomic Spectra Database, Version 5.8, National Institute of Standards and Technology, Gaithersburg, MD, https://physics.nist.gov/asd (2020)

  74. H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974)

    Google Scholar 

  75. P. Kepple, H.R. Griem, Improved Stark Profile Calculations for the hydrogen lines Hα, Hβ, Hγ and Hδ. Phys. Rev. 173, 317–325 (1968). https://doi.org/10.1103/PhysRev.173.317

    Article  ADS  Google Scholar 

  76. J. Ashkenazy, R. Kipper, M. Caner, Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines. Phys. Rev. A 43, 5568–5574 (1991). https://doi.org/10.1103/PhysRevA.43.5568

    Article  ADS  Google Scholar 

  77. A.M. El Sherbini, Th. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, Measurement of the Stark broadening of atomic emission lines in non-optically thin plasmas by laser-induced breakdown spectroscopy. Spectrosc. Lett. 40, 643–658 (2007). https://doi.org/10.1080/00387010701300958

    Article  ADS  Google Scholar 

  78. A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, Spatial distribution of hydrogen and other emitters in aluminum laser-induced plasma in air and consequences on spatially integrated laser-induced breakdown spectroscopy measurements. Spectrochim. Acta B At. Spectrosc. 63, 980–987 (2008). https://doi.org/10.1016/j.sab.2008.06.010

    Article  ADS  Google Scholar 

  79. C. Moreno-Díaz, A. Alonso-Medina, C. Colón, J.A. Porro, J.L. Ocaña, Measurement of plasma electron density generated in an experiment of laser shock processing, utilizing the Hα-line. J. Mater. Process. Technol. 232, 9–18 (2016). https://doi.org/10.1016/j.jmatprotec.2016.01.026

    Article  Google Scholar 

  80. A. Sarkar, R.V. Shah, D. Alamelu, S.K. Aggarwal, Studies on the ns-IR-laser-induced plasma parameters in the vanadium oxide. J. Phys. B At. Mol. Opt. 2011, 504764 (2011). https://doi.org/10.1155/2011/504764

    Article  Google Scholar 

  81. R.W.P. McWhirter, Spectral intensities, in Plasma Diagnostic Techniques. ed. by R.H. Huddlestone, S.L. Leonard (Academic Press, New York, 1965)

    Google Scholar 

  82. B.M. Ahmed, Plasma parameters generated from iron spectral lines by using LIBS technique. IOP Conf. Ser. Mater. Sci. Eng. 928, 072096 (2020). https://doi.org/10.1088/1757-899x/928/7/072096

    Article  Google Scholar 

  83. B. Praher, V. Palleschi, R. Viskup, J. Heitz, J.D. Pedarnig, Calibration free laser-induced breakdown spectroscopy of oxide materials. Spectrochim. Acta B At. Spectrosc. 65, 671–679 (2010). https://doi.org/10.1016/j.sab.2010.03.010

    Article  ADS  Google Scholar 

  84. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 53, 960–964 (1999). https://doi.org/10.1366/0003702991947612

    Article  ADS  Google Scholar 

  85. M. Horňáčková, M. Horňáček, J. Rakovský, P. Hudec, P. Veis, Determination of Si/Al molar ratios in microporous zeolites using calibration-free laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 88, 69–74 (2013). https://doi.org/10.1016/j.sab.2013.03.006

    Article  ADS  Google Scholar 

  86. S.A. Davari, S. Hu, E.L. Ribeiro, D. Mukherjee, Rapid elemental composition analysis of intermetallic ternary nanoalloys using calibration-free quantitative laser induced breakdown spectroscopy (LIBS). MRS Adv. 2, 3371–3376 (2017). https://doi.org/10.1557/adv.2017.303

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MT contributed to the synthesis of nanoparticles, experimental work, and hel** with the manuscript. MEK contributed to laser spectroscopy, analyzing the results, and manuscript preparation. HRA contributed to the synthesis of nanoparticles and characterization.

Corresponding author

Correspondence to Mohammad E. Khosroshahi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajabadi, M., Khosroshahi, M.E. & Alanagh, H.R. Response surface method optimization of synthesized superparamagnetic magnetite (Fe3O4) nanoparticles characterized by pulsed IR calibration-free laser-induced breakdown spectroscopy. Appl. Phys. A 129, 439 (2023). https://doi.org/10.1007/s00339-023-06720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06720-z

Keywords

Navigation