Log in

Drude–Lorentz resonance absorption in quasi-2D NiFe hydrotalcite/less layer graphite composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dielectric loss mechanism in low-dimensional carbon-based absorbing composites remains obscured, and clarifying the loss origin is beneficial for the design and preparation of high-performance electromagnetic absorbing materials. In this work, quasi-2D NiFe hydrotalcite/less layer graphite composites are synthesized by high-speed liquid shear method. The measurements of the microwave absorption show that it has a broadband absorption property. Particle swarm optimization algorithm is used to analyze and confirm the coexistence loss mechanism of Debye-relaxation and Drude–Lorentz resonance absorption in this material. The morphology, X-ray photoelectron spectroscopy and Raman spectroscopy characterization further elucidate that the quasi-2D interface between functional particles and carbon-based sheets is the physical origin for the enhancement of Drude–Lorentz resonance absorption. This study provides a novel strategy for improving the absorbing performance of carbon-based composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Li, X. Tang, X. Zhao, S. Lu, J. Luo, Z. Chai, T. Ma, Q. Lan, P. Ma, W. Dong et al., Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 133, 238–248 (2023)

    Article  Google Scholar 

  2. X. Liu, X. Zhao, J. Yan, Y. Huang, T. Li, P. Liu, Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly (3, 4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite. Carbon 178, 273–284 (2021)

    Article  Google Scholar 

  3. Z. Liu, F. Pan, B. Deng, Z. **ang, W. Lu, Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021)

    Article  Google Scholar 

  4. B. Wei, C. Zhou, Z. Yao, L. Xu, Z. Li, L. Wan, J. Hou, J. Zhou, Lightweight and high-efficiency microwave absorption of reduced graphene oxide loaded with irregular magnetic quantum dots. J. Alloys Compd. 886, 161330 (2021)

    Article  Google Scholar 

  5. F. Li, W. Zhan, Y. Su, S.H. Siyal, G. Bai, W. **ao, A. Zhou, G. Sui, X. Yang, Achieving excellent electromagnetic wave absorption of ZnFe2O4@CNT/polyvinylidene fluoride flexible composite membranes by adjusting processing conditions. Compos. Part A Appl. Sci. Manuf. 133, 105866 (2020)

    Article  Google Scholar 

  6. L. Ren, Y. Wang, Z. Jia, Q. He, G. Wu, Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption. Compos. Commun. 29, 101052 (2022)

    Article  Google Scholar 

  7. Y. Yao, S. **, J. Sun, L. Li, H. Zou, P. Wen, G. Lv, X. Lv, Q. Shu, Sandwich-like sulfur-free expanded graphite/CoNi hybrids and their synergistic enhancement of microwave absorption. J. Alloys Compd. 862, 158005 (2021)

    Article  Google Scholar 

  8. C. Lei, Y. Du, Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/ferrite composites. J. Alloys Compd. 822, 153674 (2020)

    Article  Google Scholar 

  9. X. Shu, H. Ren, Y. Jiang, J. Zhou, Y. Wang, Y. Wang, Y. Liu, W.-C. Oh, Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites. J. Mater. Chem. C 8(8), 2913–2926 (2020)

    Article  Google Scholar 

  10. Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11(3), 1426–1436 (2018)

    Article  Google Scholar 

  11. M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9(10), 2105553 (2022)

    Article  Google Scholar 

  12. J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai, Interfacial interactions and synergistic eff ect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016)

    Article  Google Scholar 

  13. W. **ng, P. Li, H. Wang, Q. Lei, Y. Huang, J. Fan, G. Xu, The similar Cole–Cole semicircles and microwave absorption of Hexagonal Co/C composites. J. Alloys Compd. 750, 917–926 (2018)

    Article  Google Scholar 

  14. P. He, M. Zheng, Q. Liu, Z. Liu, R. Zuo, W. Cao, J. Yuan, M. Cao, MXene nanohybrids: Excellent electromagnetic properties for absorbing electromagnetic waves. Ceram. Int. 48(2), 1484–1493 (2022)

    Article  Google Scholar 

  15. P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, J. Luo, Core–shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-effi ciency microwave attenuation. ACS Appl. Mater. Interfaces 11(28), 25624–25635 (2019)

    Article  Google Scholar 

  16. F. Liao, X. Zhao, G. Yang, Q. Cheng, L. Mao, L. Chen, Recent advances on two-dimensional NiFe-LDHs and their composites for electrochemical energy conversion and storage. J. Alloys Compd. 872, 159649 (2021)

    Article  Google Scholar 

  17. Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu, C. Luo, J. Kong, Q. Shao, N. Wang, Z. Guo et al., Ultralight, highly compressible and fi re-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018)

    Article  Google Scholar 

  18. Y. Zhang, S. Gao, Y. Wang, Metal–organic framework derived magnetic carbon Ni@C octahedron composite as an excellent microwave absorber. Compos. Commun. 31, 101135 (2022)

    Article  Google Scholar 

  19. M. He, Y. Zhou, T. Huang, S. Nie, Y. Wang, Z. Xu, Y. Huo, R. Xu, X. Chen, H. Peng, Flower-like CoS hierarchitectures@polyaniline organic-inorganic heterostructured composites: preparation and enhanced microwave absorption performance. Compos. Sci. Technol. 200, 108403 (2020)

    Article  Google Scholar 

  20. J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152, 545–555 (2019)

    Article  Google Scholar 

  21. M. Eldlio, F. Che, M. Cada, Drude–Lorentz model of semiconductor optical plasmons, in IAENG Transactions on Engineering Technologies Special Issue of the World Congress on Engineering and Computer Science 2012. (Springer, Netherlands, Dordrecht, 2014), pp.41–49

    Chapter  Google Scholar 

  22. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)

    Article  ADS  Google Scholar 

  23. J. Shibayama, K. Suzuki, T. Iwamoto, J. Yamauchi, H. Nakano, Dispersive contour-path FDTD algorithm for the Drude–Lorentz model. IEEE Antennas Wirel. Propag. Lett. 19(10), 1699–1703 (2020)

    Article  ADS  Google Scholar 

  24. K. Prokopidis, C. Kalialakis, Physical interpretation of a modified Lorentz dielectric function for metals based on the Lorentz–Dirac force. Appl. Phys. B 117(1), 25–32 (2014)

    Article  ADS  Google Scholar 

  25. K.H. Lee, I. Ahmed, R.S.M. Goh et al., Implementation of the Fdtd method based on Lorentz–Drude dispersive model on Gpu for plasmonics applications. Prog. Electromagn. Res. 116, 441–456 (2011)

    Article  Google Scholar 

  26. I. Ahmed, E.H. Khoo, O. Kurniawan et al., Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model. J. Opt. Soc. America B 28(3), 352 (2011)

    Article  ADS  Google Scholar 

  27. H. Zhao, X. Han, Z. Li, D. Liu, Y. Wang, Y. Wang, W. Zhou, Y. Du, Reduced graphene oxide decorated with carbon nanopolyhedrons as an effi cient and lightweight microwave absorber. J. Colloid Interface Sci. 528, 174–183 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Basic Science (Natural Science Research of Jiangsu Higher Education Institutions of China) research project of Jiangsu Province (21KJA430010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiu Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Liu, D., Wang, R. et al. Drude–Lorentz resonance absorption in quasi-2D NiFe hydrotalcite/less layer graphite composites. Appl. Phys. A 129, 379 (2023). https://doi.org/10.1007/s00339-023-06657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06657-3

Keywords

Navigation