Log in

Microscale investigations on additively manufactured Inconel 718: influence of volumetric energy density on microstructure, texture evolution, defects control and residual stress

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, Inconel 718 (IN718) blocks were fabricated for initial screening using a wide range of volumetric energy density (VED) varying between 29 and 177 J/mm3 within the machine specifications. The VED ranges from 66 to 111 J/mm3 revealed to have maximum relative density (RD), i.e., above 99% with a minimum fractional porosity between 0.01% and 0.08%. Higher VED in the range from 128 to 177 J/mm3 exhibited significant layer delamination. Based on the initial screening results, the samples were further fabricated within the identified process window of VED ranging between 38 and 111 J/mm3 to ensure repeatability and to analyze the microstructural changes and residual stress (RS) formation. The as-fabricated microstructures exhibited columnar growth of grains along the build direction with varying Nb Wt.% between dendritic and interdendritic regions. The Nb segregation in the interdendritic regions was found to decreased by 17.09% while increasing the VED. The results showed that increasing VED changes the shape of the melt pool boundaries from shallow to deeper. Electron Backscatter Diffraction (EBSD) results showed the evolution of a strong texture in <001> direction with an increase in grain size from 14.77 to 63 µm as the VED increased. The tensile RS magnitude was found to be increased as the VED increased due to the high thermal gradient. The main challenge in the L-PBF process is the simultaneous control of defects, microstructure, texture, and RS formation. The findings of current research deliver a better VED window to fabricate defect less IN718 parts for aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Wang, X. Gong, K. Chou, Proc. Inst. Mech. Eng. Pt. B: J. Eng. Manuf. 231, 1890 (2017)

    Google Scholar 

  2. J.P. Davim, Modern mechanical engineering: research, development and education (Springer, Berlin, 2016)

    Google Scholar 

  3. G. Gong, J. Ye, Y. Chi, Z. Zhao, Z. Wang, G. **a, X. Du, H. Tian, H. Yu, C. Chen, J. Mater. Res. Technol. 15, 855 (2021)

    Google Scholar 

  4. H.K. Dave, J.P. Davim, Fused deposition modeling Based 3D printing, 1st edn. (Springer Nature, Cham, 2022)

    Google Scholar 

  5. J. Pou, A. Riveiro, J.P. Davim (eds.), Additive manufacturing. (Elsevier Science Publishing, Philadelphia, 2021)

    Google Scholar 

  6. S.Y. Liu, H.Q. Li, C.X. Qin, R. Zong, X.Y. Fang, Mater. Des. 191, 108642 (2020)

    Google Scholar 

  7. V.P. Kumar, A.V. Jebaraj, Int. J. Adv. Manuf. Technol. 121, 4455 (2022)

    Google Scholar 

  8. J.P. Davim, Laser in manufacturing: Davim/lasers in manufacturing (ISTE Ltd and Wiley, London, 2012)

    Google Scholar 

  9. D. Praveen-Kumar, A. Vinoth-Jebaraj, Trans. Indian Inst. Met. 75, 3077 (2022)

    Google Scholar 

  10. J.P. Davim, Mechanical and industrial engineering: historical aspects and future directions (Springer Nature, Cham, 2022)

    Google Scholar 

  11. P. Kumar, V.S.K. Chakravadhhanula, S.K. Manwatkar, P. Chakravarthy, S.V.S.N. Murty, Trans. Indian Natl. Acad. Eng. 6, 1083 (2021)

    Google Scholar 

  12. D. Zhang, W. Niu, X. Cao, Z. Liu, Mater. Sci. Eng. A Struct. Mater. 644, 32 (2015)

    Google Scholar 

  13. M. Ma, Z. Wang, X. Zeng, Mater. Charact. 106, 420 (2015)

    Google Scholar 

  14. J.-P. Choi, G.-H. Shin, S. Yang, D.-Y. Yang, J.-S. Lee, M. Brochu, J.-H. Yu, Powder Technol. 310, 60 (2017)

    Google Scholar 

  15. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, F. Rezai, Mater. Sci. Eng. A Struct. Mater. 735, 182 (2018)

    Google Scholar 

  16. P. Kumar, J. Farah, J. Akram, C. Teng, J. Ginn, M. Misra, Int. J. Adv. Manuf. Technol. 103, 1497 (2019)

    Google Scholar 

  17. F. Caiazzo, V. Alfieri, G. Casalino, Materials (Basel) 13, 538 (2020)

    ADS  Google Scholar 

  18. T. Huynh, A. Mehta, K. Graydon, J. Woo, S. Park, H. Hyer, L. Zhou, D.D. Imholte, N.E. Woolstenhulme, D.M. Wachs, Y. Sohn, Metallogr. Microstruct. Anal. 11, 88 (2022)

    Google Scholar 

  19. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, Metall. Mater. Trans. A 45, 6260 (2014)

    Google Scholar 

  20. X. Wang, K. Chou, J. Manuf. Process. 48, 154 (2019)

    Google Scholar 

  21. R. Barros, F.J.G. Silva, R.M. Gouveia, A. Saboori, G. Marchese, S. Biamino, A. Salmi, E. Atzeni, Metals (Basel) 9, 1290 (2019)

    Google Scholar 

  22. J.H. Yi, J.W. Kang, T.J. Wang, X. Wang, Y.Y. Hu, T. Feng, Y.L. Feng, P.Y. Wu, J. Alloys Compd. 786, 481 (2019)

    Google Scholar 

  23. M. Balbaa, S. Mekhiel, M. Elbestawi, J. McIsaac, Mater. Des. 193, 108818 (2020)

    Google Scholar 

  24. Test Method for Density Determination for Powder Metallurgy (P/M) Materials Containing Less Than Two Percent Porosity1 (ASTM B311 – 93, 2002)

  25. J. Xu, Z. Wu, J. Niu, Y. Song, C. Liang, K. Yang, Y. Chen, Y. Liu, Crystals (Basel) 12, 1243 (2022)

    Google Scholar 

  26. M. Andurkar, T. Suzuki, M. Omori, B. Prorok, J. Gahl, S. Thompson, (2021).

  27. K. Tanaka, Mech. Eng. Rev. 6, 18 (2019)

    Google Scholar 

  28. D.S. Watring, J.T. Benzing, N. Hrabe, A.D. Spear, Addit. Manuf. 36, 101425 (2020)

    Google Scholar 

  29. A. Ullah, A. Ur-Rehman, M.U. Salamci, F. Pıtır, T. Liu, Rapid Prototyp. J. 28, 1796 (2022)

    Google Scholar 

  30. T. Simson, A. Emmel, A. Dwars, J. Böhm, Addit. Manuf. 17, 183 (2017)

    Google Scholar 

  31. V.P. Kumar, A.V. Jebaraj, Trans. Indian Inst. Met. 74, 3103 (2021)

    Google Scholar 

  32. A. Keshavarzkermani, E. Marzbanrad, R. Esmaeilizadeh, Y. Mahmoodkhani, U. Ali, P.D. Enrique, N.Y. Zhou, A. Bonakdar, E. Toyserkani, Opt. Laser Technol. 116, 83 (2019)

    ADS  Google Scholar 

  33. X. Wang, K. Chou, Addit. Manuf. 18, 1 (2017)

    Google Scholar 

  34. L. Huang, Y. Cao, G. Li, Y. Wang, J. Mater. Res. Technol. 9, 2440 (2020)

    Google Scholar 

  35. X. Liu, W. **ao, L. Song, H. **ao, Appl. Phys. A Mater. Sci. Process. 128, (2022)

  36. D.N. Luu, W. Zhou, S.M.L. Nai, J. Mater. Process. Technol. 299, 117374 (2022)

    Google Scholar 

  37. N. Hasani, C. Dharmendra, M. Sanjari, F. Fazeli, B.S. Amirkhiz, H. Pirgazi, G.D.J. Ram, M. Mohammadi, Mater. Charact. 181, 111499 (2021)

    Google Scholar 

  38. D. Du, A. Dong, D. Shu, G. Zhu, B. Sun, X. Li, E. Lavernia, Mater. Sci. Eng. A Struct. Mater. 760, 469 (2019)

    Google Scholar 

  39. S. Ghorbanpour, S. Sahu, K. Deshmukh, E. Borisov, T. Riemslag, E. Reinton, V. Bertolo, Q. Jiang, A. Popovich, A. Shamshurin, M. Knezevic, V. Popovich, Mater. Charact. 179, 111350 (2021)

    Google Scholar 

  40. N. Nadammal, S. Cabeza, T. Mishurova, T. Thiede, A. Kromm, C. Seyfert, L. Farahbod, C. Haberland, J.A. Schneider, P.D. Portella, G. Bruno, Mater. Des. 134, 139 (2017)

    Google Scholar 

  41. F. Yan, W. **ong, E. Faierson, Materials (Basel) 10, 1260 (2017)

    ADS  Google Scholar 

  42. M. Ghayoor, K. Lee, Y. He, C.-H. Chang, B.K. Paul, S. Pasebani, Addit. Manuf. 32, 101011 (2020)

    Google Scholar 

  43. S. Zhang, Y. Lei, Z. Chen, P. Wei, W. Liu, S. Yao, B. Lu, Materials (Basel) 14, 4305 (2021)

    ADS  Google Scholar 

  44. J.H. Park, G.B. Bang, K.-A. Lee, Y. Son, W.R. Kim, H.G. Kim, J. Mater. Res. Technol. 10, 785 (2021)

    Google Scholar 

  45. E.M. Fayed, M. Saadati, D. Shahriari, V. Brailovski, M. Jahazi, M. Medraj, Sci. Rep. 11, 2020 (2021)

    Google Scholar 

  46. Y. Liu, Y. Yang, D. Wang, Int. J. Adv. Manuf. Technol. 87, 647 (2016)

    Google Scholar 

  47. H. Ali, H. Ghadbeigi, K. Mumtaz, Int. J. Adv. Manuf. Technol. 97, 2621 (2018)

    Google Scholar 

  48. H.R. Javidrad, S. Salemi, Metall. Mater. Trans. A 51, 5880 (2020)

    Google Scholar 

  49. Mugwagwa, Yadroitsev, and Matope, Metals (Basel) 9, 1042 (2019).

  50. J. Song, L. Zhang, W. Wu, B. He, X. Ni, J. Xu, G. Zhu, Q. Yang, T. Wang, L. Lu, J. Mater. Res. 34, 1395 (2019)

    ADS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the idea and methodology. Sample preparation, data collection, and analysis were performed by VPK. The first draft of the manuscript was written by VPK. Corresponding author Dr. AVJ read commented on previous versions of the manuscript and approved the corrected final manuscript.

Corresponding author

Correspondence to A. Vinoth Jebaraj.

Ethics declarations

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics statement

This article does not contain any studies with animals performed by any of the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveen Kumar, V., Vinoth Jebaraj, A. Microscale investigations on additively manufactured Inconel 718: influence of volumetric energy density on microstructure, texture evolution, defects control and residual stress. Appl. Phys. A 129, 370 (2023). https://doi.org/10.1007/s00339-023-06642-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06642-w

Keywords

Navigation