Log in

Tandem organic solar cells with a large VOC by control of the active-layer concentration

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The tandem organic solar cell could absorb the complementarity sunlight spectra by the sub-cells based on the different energy gap of the active-layer materials. In this work, a wide-band gap of the organic material PTB7-Th: PC71BM is used as the front sub-cells active layer, and the narrow-band gap of PTB7-Th: IEICO-4F is used as the rear sub-cells active layer. The front and rear sub-cells present the complementary absorption spectra leading to the sufficiently improvement of the sunlight absorption. MoO3/Au/ZnO multilayer film is the interconnecting layer. ZnO film was prepared by the sputtering method is smaller root-mean-square than that of the film prepared by the solution synthesis, resulting in a good contact interfacial between the sub-cells. This is in favor of the JSC and FF of the tandem organic solar cell. Importantly, the short-circuit current density of the tandem solar cell is handily controlled by the active-layer concentration of the front sub-cell, the tandem cell exhibits an optimal PCE of 11.77% with a large VOC of 1.45 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data in this study is availability.

References

  1. Y. Zang, C.Z. Li, C.C. Chueh, S.T. Williams, W. Jiang, Z.H. Wang, J.S. Yu, A.K. Jen, Adv. Mater. 26(32), 5708 (2014)

    Article  Google Scholar 

  2. J.Y. Fan, Z.X. Liu, J. Rao, K. Yan, Z. Chen, Y. Ran, B. Yan, J. Yao, G. Lu, H. Zhu, C.Z. Li, H. Chen, Adv. Mater. 34(28), e2110569 (2022)

    Article  Google Scholar 

  3. D. Wang, G. Zhou, Y. Li, K. Yan, L. Zhan, H. Zhu, X. Lu, H. Chen, C.Z. Li, Adv. Funct. Mater. 32(4), 2107827 (2021)

    Article  Google Scholar 

  4. R. Sun, Y. Wu, X. Yang, Y. Gao, Z. Chen, K. Li, J. Qiao, T. Wang, J. Guo, C. Liu, X. Hao, H. Zhu, J. Min, Adv. Mater. 34(26), e2110147 (2022)

    Article  Google Scholar 

  5. T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Energy Environ. Sci. 2(4), 347–363 (2009)

    Article  Google Scholar 

  6. Y. Huang, L. Meng, H. Liang, M. Li, H. Chen, C. Jiang, K. Zhang, F. Huang, Z. Yao, C. Li, X. Wan, Y. Chen, J. Mater. Chem. A 10(20), 11238 (2022)

    Article  Google Scholar 

  7. T. Ameri, N. Li, C.J. Brabec, Energy Environ. Sci. 6(8), 2390–2413 (2013)

    Article  Google Scholar 

  8. Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 6(1), 171 (2022)

    Article  ADS  Google Scholar 

  9. C.H.Y. Ho, J. Kothari, X. Fu, F. So, Mater. Today Energy 21, 100707 (2021)

    Article  Google Scholar 

  10. S. Lu, D. Ouyang, W.C.H. Choy, Sci. China Chem. 60(4), 460 (2017)

    Article  Google Scholar 

  11. L. Meng, Y.Q. Yi, X. Wan, Y. Zhang, X. Ke, B. Kan, Y. Wang, R. **a, H.L. Yip, C. Li, Y. Chen, Adv. Mater. 31(18), e1804723 (2019)

    Article  Google Scholar 

  12. P. Cheng, G. Li, X. Zhan, Y. Yang, Nat. Photonics 12(3), 131 (2018)

    Article  ADS  Google Scholar 

  13. P. Cheng, Y. Liu, S.-Y. Chang, T. Li, P. Sun, R. Wang, H.-W. Cheng, T. Huang, L. Meng, S. Nuryyeva, C. Zhu, K.-H. Wei, B. Sun, X. Zhan, Y. Yang, Joule 3(2), 432 (2019)

    Article  Google Scholar 

  14. Y. Firdaus, Q. He, Y. Lin, F.A.A. Nugroho, V.M. Le Corre, E. Yengel, A.H. Balawi, A. Seitkhan, F. Laquai, C. Langhammer, F. Liu, M. Heeney, T.D. Anthopoulos, J. Mater. Chem. A 8(3), 1164 (2020)

    Article  Google Scholar 

  15. C.H.Y. Ho, T. Kim, Y. **ong, Y. Firdaus, X. Yi, Q. Dong, J.J. Rech, A. Gadisa, R. Booth, B.T. O’Connor, A. Amassian, H. Ade, W. You, T.D. Anthopoulos, F. So, Adv. Energy Mater. 10(25), 2000495 (2020)

    Article  Google Scholar 

  16. B.D. Choudhury, B. Ibarra, F. Cesano, Y. Mao, M.N. Huda, A.R. Chowdhury, C. Olivares, M. Jasim Uddin, Sol. Energy. 201, 28 (2020)

    Article  ADS  Google Scholar 

  17. Y. Firdaus, V.M. Le Corre, J.I. Khan, Z. Kan, F. Laquai, P.M. Beaujuge, T.D. Anthopoulos, Adv. Sci. (Weinh) 6(9), 1802028 (2019)

    Article  Google Scholar 

  18. M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. **a, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H.-L. Yip, X. Peng, Y. Cao, Y. Chen, Nat. Photonics 11(2), 85 (2016)

    Article  ADS  Google Scholar 

  19. C. Liu, X. Du, S. Gao, A. Classen, A. Osvet, Y. He, K. Mayrhofer, N. Li, C.J. Brabec, Adv. Energy Mater. 10(12), 1903800 (2020)

    Article  Google Scholar 

  20. Y. Zhang, B. Kan, Y. Sun, Y. Wang, R. **a, X. Ke, Y.Q. Yi, C. Li, H.L. Yip, X. Wan, Y. Cao, Y. Chen, Adv. Mater. 30(18), e1707508 (2018)

    Article  Google Scholar 

  21. Z. Jia, S. Qin, L. Meng, Q. Ma, I. Angunawela, J. Zhang, X. Li, Y. He, W. Lai, N. Li, H. Ade, C.J. Brabec, Y. Li, Nat. Commun. 12(1), 178 (2021)

    Article  Google Scholar 

  22. G. Liu, J. Jia, K. Zhang, X.E. Jia, Q. Yin, W. Zhong, L. Li, F. Huang, Y. Cao, Adv. Energy Mater. 9(11) (2019)

  23. H. Aqoma, I.F. Imran, F.T.A. Wibowo, N.V. Krishna, W. Lee, A.K. Sarker, D.Y. Ryu, S.Y. Jang, Adv. Energy Mater. 10(37), 2001188 (2020)

    Article  ADS  Google Scholar 

  24. Z. Tang, Z. George, Z. Ma, J. Bergqvist, K. Tvingstedt, K. Vandewal, E. Wang, L.M. Andersson, M.R. Andersson, F. Zhang, O. Inganäs, Adv. Energy Mater. 2(12), 1467 (2012)

    Article  Google Scholar 

  25. D.W. Zhao, L. Ke, Y. Li, S.T. Tan, A.K.K. Kyaw, H.V. Demir, X.W. Sun, D.L. Carroll, G.Q. Lo, D.L. Kwong, Sol. Energy Mater. Sol. Cells 95(3), 921 (2011)

    Article  Google Scholar 

  26. M.B. Salim, R. Nekovei, R. Jeyakumar, Sol. Energy 198, 160 (2020)

    Article  ADS  Google Scholar 

  27. G. Liu, R. **a, Q. Huang, K. Zhang, Z. Hu, T. Jia, X. Liu, H.L. Yip, F. Huang, Adv. Funct. Mater. 31(29), 2103283 (2021)

    Article  Google Scholar 

  28. J. He, Q. Zheng, Z. Ren, J. Yu, H. Deng, Y. Lai, S. Cheng, Sol. Energy 220, 394 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (No.61704028), the Natural Science Foundation of Fujian Province (No.2019J01217).

Funding

The National Natural Science Foundation of China, No. 61704028, Qiao Zheng, the Natural Science Foundation of Fujian Province, No. 2019J01217, Qiao Zheng.

Author information

Authors and Affiliations

Authors

Contributions

QZ and JH contributed equally to this work. QZ, JH, SD and PC conceived the idea and designed the experiments. JH completed the fabrication and characterization of devices. QZ, JH, SD, PC, HZ, QS, HD, JW, CZ and SC participated in the discussion and revision of the manuscript and data analysis. JH wrote the paper. QZ revised the paper. All authors agreed on the manuscript.

Corresponding author

Correspondence to Qiao Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Huang, J., Chen, P. et al. Tandem organic solar cells with a large VOC by control of the active-layer concentration. Appl. Phys. A 129, 252 (2023). https://doi.org/10.1007/s00339-023-06533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06533-0

Keywords

Navigation