Log in

Nanoparticle-coated Vivaldi antenna array for gain enhancement

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel technique is described to significantly enhance the gain of a Vivaldi antenna (CVA) array by a factor of four (6 dB) without compromising its size and radiation characteristics. This is achieved by loading the antenna with Complementary Split-Ring Resonators (CSRR) and periodic array of open-loop meander-line unit cells. The unit cells are designed to exhibit properties of anisotropic zero-index metamaterial (AZIM) over a frequency range of the antenna. The inclusion of CSRR and AZIM in the antenna design is shown to effectively expand its aperture size with the advantage of not impacting on the overall size of the antenna. Moreover, the antenna is excited with a novel feedline consisting of hair-comb radial stubs (HCRS) that matches the impedance the 50-Ω feedline with the radiating elements of the antenna to thereby maximize power transfer. The proposed antenna array was fabricated to validate its performance. The peak measured gain of the array is 7.49 dBi at 177 degrees in the E-plane and its sidelobes are 10 dB below the peak gain. The 3-dB beamwidth of the array is 32.8 degrees. Furthermore, it is shown for the first time that by depositing a thin film of Graphene/copper nanoparticles onto the CSRR, the array’s gain is increased to 10 dBi at 180 degrees with sidelobe reduction of better than 15 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B. Zhou, T.J. Cui, Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel. Propag. Lett. 10, 326–329 (2011). https://doi.org/10.1109/lawp.2011.2142170

    Article  ADS  Google Scholar 

  2. M. Bhaskar, E. Johari, Z. Akhter, M.J. Akhtar, Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial. Microw. Opt. Technol. Lett. 58(1), 233–238 (2016). https://doi.org/10.1002/mop.29534

    Article  Google Scholar 

  3. Q.-H.L. Jiangniu Wu, Z. Zhao, A novel Vivaldi antenna with extended ground plane stubs for ultrawideband applications. Microw. Opt. Technol. Lett. 57(4), 983–987 (2015). https://doi.org/10.1002/mop.28955

    Article  Google Scholar 

  4. P. J. Gibson, The Vivaldi aerial. 1979 9th Eur. Microw. Conf. https://doi.org/10.1109/EUMA.1979.332681.

  5. P. Piksa, V. Sokol, Small Vivaldi antenna for UWB. Proc. Conf. Radioelektronika, pp. 490–493 (2005).

  6. E.W. Reid, L. Ortiz-balbuena, A. Ghadiri, S. Member, A 324-element Vivaldi antenna array for radio astronomy instrumentation. IEEE Trans. Instrum. Meas. 61(1), 241–250 (2012)

    Article  ADS  Google Scholar 

  7. T.J. Ellis and G.M. FLebeii, MM-Wave tapered slot antennas on micromachined photonic bandgap dielectrics. IEEE MTT-S Int. Microw. Symp. Dig. (1996)

  8. Y. Wang, G. Wang, B. Zong, Directivity improvement of vivaldi antenna using double-slot structure. IEEE Antennas Wirel. Propag. Lett. 12, 1380–1383 (2013)

    Article  ADS  Google Scholar 

  9. D.M. Elsheakh, E.A. Abdallah, Compact shape of vivaldi antenna for water detection using. Microw. Opt. Technol. Lett. 56(8), 1801–1809 (2014). https://doi.org/10.1002/mop

    Article  Google Scholar 

  10. D.G.A. Lazaro, R. Villarino, Design of tapered slot Vivaldi antenna for UWB breast cancer detection. Microw. Opt. Technol. Lett. 53(3), 639–643 (2011). https://doi.org/10.1002/mop

    Article  Google Scholar 

  11. R. Natarajan, J.V. George, M. Kanagasabai, A.K. Shrivastav, A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 14, 1557–1560 (2015). https://doi.org/10.1109/LAWP.2015.2412255

    Article  ADS  Google Scholar 

  12. G.K. Pandey, H. Verma, M.K. Meshram, Compact antipodal Vivaldi antenna for UWB applications. Electron. Lett. 51(4), 308–310 (2015). https://doi.org/10.1049/el.2014.3540

    Article  ADS  Google Scholar 

  13. F. Falcone et al., Effective negative—epsilon stopband microstrip lines based on complementary split ring resonators. IEEE Microw. Wirel. Components Lett. 14(6), 280–282 (2004)

    Article  Google Scholar 

  14. S.K. Patel, Y. Kosta, Triband microstrip–based radiating structure design using split ring resonator andcomplementary split ring resonator. Microw. Opt. Technol. Lett. 55(9), 2219–2222 (2013). https://doi.org/10.1002/mop

    Article  Google Scholar 

  15. A. Kabiri, Artificial magnetic material: limitations, synthesis and possibilities. A thesis presented to the University of Waterloo 2010.

  16. E. Shamonina, Basics of single negative and double negative metamaterials.

  17. M.T. Islam, M. Samsuzzaman, S. Kibria, N. Misran, M.T. Islam, Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm. Sci. Rep. 9, 17317 (2019). https://doi.org/10.1038/s41598-019-53857-0

    Article  ADS  Google Scholar 

  18. S.K. Tiwari, S. Sahoo, N. Wang, A. Huczko, Graphene Research and their outputs: status and prospect. J. Sci.: Adv. Mater. Devices 5(1), 10–29 (2020)

    Google Scholar 

  19. X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 1–14 (2017). https://doi.org/10.1038/natrevmats.2017.46

    Article  Google Scholar 

  20. S. Bashirvand, A. Montazeri, New aspects on the metal reinforcement by carbon nanofillers: a molecular dynamics study. Mater. Des. 91, 306–313 (2016). https://doi.org/10.1016/j.matdes.2015.11.111

    Article  Google Scholar 

  21. A.M. Lewis, B. Derby, I.A. Kinloch, Influence of gas phase equilibria on the chemical vapor deposition of Graphene. ACS Nano 7(4), 3104–3117 (2013). https://doi.org/10.1021/nn305223y

    Article  Google Scholar 

  22. P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I.A. Kinloch, R.J. Young, Copper/Graphene composites: a review. J. Mater. Sci. 54(19), 12236–12289 (2019). https://doi.org/10.1007/s10853-019-03703-5

    Article  ADS  Google Scholar 

  23. R.J. Young, I.A. Kinloch, L. Gong, K.S. Novoselov, The mechanics of Graphene nanocomposites: a review. Compos. Sci. Technol. 72(12), 1459–1476 (2012). https://doi.org/10.1016/j.compscitech.2012.05.005

    Article  Google Scholar 

  24. P. Cataldi, A. Athanassiou, I.S. Bayer, Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. (2018). https://doi.org/10.3390/app8091438

    Article  Google Scholar 

  25. P.K. Singh, A.K. Tiwary, Novel compact dual bandstop filter using radial stub. Microw. Rev. 21(1), 17–22 (2015)

    Google Scholar 

  26. T. Cai, G.M. Wang, X.F. Zhang, Y.W. Wang, B.F. Zong, H.X. Xu, Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials. IEEE Trans. Antennas Propag. 63(5), 2306–2311 (2015). https://doi.org/10.1109/TAP.2015.2405081

    Article  ADS  Google Scholar 

  27. S. Zhu, H. Liu, P. Wen, A new method for achieving miniaturization and gain enhancement of vivaldi antenna array based on anisotropic metasurface. IEEE Trans. Antennas Propag. 67(3), 1952–1956 (2019). https://doi.org/10.1109/TAP.2019.2891220

    Article  ADS  Google Scholar 

  28. D. Smith, S. Schultz, P. Markoš, C. Soukoulis, Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19), 1–5 (2002)

    Article  Google Scholar 

  29. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Magneto-optical conductivity in Graphene. J. Phys. Condens. Matter. (2007). https://doi.org/10.1088/0953-8984/19/2/026222

    Article  Google Scholar 

  30. M. H. Yu Shao, **g **g Yang, A Review of computational electromagnetic methods for Graphene modeling. Int. J. Antennas Propag. 1, (2016).

  31. R. Wang, X.-G. Ren, Z. Yan, L.-J. Jiang, W.E.I. Sha, G.-C. Shan, Frontiers of Physics Graphene based functional devices: a short review. Front. Phys. 14(1), 13603 (2019)

    Article  ADS  Google Scholar 

  32. N. Djapic and S. Diego, Method and bend structure for reducing transmission line bend loss. United States Patent, US6642819B1.

  33. S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and Graphene nanosheets. Mater. Sci. Eng. R Reports 74(10), 281–350 (2013). https://doi.org/10.1016/j.mser.2013.08.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Northwest Antenna and Microwave Research Laboratory (NAMRL) at Urmia University for technical support. We would also like to express our gratitude to Dr. Mohsen Karamirad and Dr. Nasrin Mohajeri for fruitful discussions and support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouya Faeghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faeghi, P., Ghobadi, C., Nourinia, J. et al. Nanoparticle-coated Vivaldi antenna array for gain enhancement. Appl. Phys. A 129, 217 (2023). https://doi.org/10.1007/s00339-023-06505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06505-4

Keywords

Navigation