Log in

Investigation of negative resistance regions in W-WO3 nanoparticles and UV-B light detection properties of PVA-W-WO3 flexible composite films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have synthesised tungsten metal encapsulated WO3 nanoparticles by a straightforward sol–gel method and current–voltage (I-V) characteristics have been analysed to show the benefits of the metal–metal oxide. The I-V characteristic of these nanoparticles displays two discrete negative resistance (NR) areas together with the production of metal (W) filaments following the current-controlled negative differential resistance (CC-NDR) model. These materials have an extraordinary high-output ac power supplying capacity with a peak-to-voltage ratio (PVR) of 9.65 in the voltage range of 0.45–0.7 V. Their special characteristics render them ideal materials for new-generation oscillating devices. On the other hand, in order to tune charge-storing capacity, increase energy density and customise the electronic circuital space, we have attempted to adjust interfacial-dipolar polarisation and electron trap** by modulating grain-grain boundary interfaces through the voltage-dependent electrical study. Here we have also investigated the effects of temperature and voltage fluctuations on the I-V characteristics, impedance spectroscopy or phase angle and assessed how the relaxation dynamics and charge transportation changed under various environmental conditions. Additionally, the orientation of the polar PVA and the flexible composite films' luminance spectra are amended by adding hydrophilic W-WO3 nanoparticles and modifying the excitation wavelength (280–320 nm). The linear relationship between the luminance spectra and excitation wavelength (280–320 nm) of the composite films suggests their usefulness as UV-B detectors. Therefore, this foundational research highlighted multifunctional nanoparticles and flexible organic materials paving towards commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. S. Krishnamoorthy, E.W. Lee, C.H. Lee, Y. Zhang, W.D. McCulloch, J.M. Johnson, J. Hwang, Y. Wu, S. Rajan, High current density 2D/3D MoS2/GaN esaki tunnel diodes. Appl. Phys. Lett. 109, 032104 (2016)

    Google Scholar 

  2. J.A. Copeland, Theoretical study of a Gunn diode in a resonant circuit. IEEE Trans. Electron Devices 14, 55 (1967)

    ADS  Google Scholar 

  3. T.W. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669 (1962)

    ADS  Google Scholar 

  4. T.W. Hickmott, Impurity conduction and negative resistance in thin oxide films. J. Appl. Phys. 35, 2118 (1964)

    ADS  Google Scholar 

  5. A. Sengupta, S. Mahapatra, Negative differential resistance and effect of defects and deformations in MoS2 armchair nanoribbon metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 114, 194513 (2013)

    ADS  Google Scholar 

  6. K.K. Dey, P. Kumar, R.R. Yadav, A. Dhar, A.K. Srivastava, CuO nanoellipsoids for superior physicochemical response of biodegradable PVA. RSC Adv. 4, 10123 (2014)

    ADS  Google Scholar 

  7. Y. Zhang, W. Li, S. Xu, Z. Wang, Y. Zhao, J. Li, W. Fei, Interlayer coupling to enhance the energy storage performance of Na0.5Bi0.5TiO3–SrTiO3 multilayer films with the electric field amplifying effect. J. Mater. Chem. A 6, 24550 (2018)

    Google Scholar 

  8. D.Q. Tan, Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30, 1 (2020)

    Google Scholar 

  9. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1 (2018)

    Google Scholar 

  10. J.W. Zha, M.S. Zheng, B.H. Fan, Z.M. Dang, Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano Energy 89, 106438 (2021)

    Google Scholar 

  11. D. Kaur, A. Bharti, T. Sharma, C. Madhu, Dielectric properties of ZnO-based nanocomposites and their potential applications. Int. J. Opt. 2021, 1 (2021)

    Google Scholar 

  12. G. Liu, Y. Gan, R. Quhe, P. Lu, Strain dependent electronic and optical properties of PtS2 monolayer. Chem. Phys. Lett. 709, 65 (2018)

    ADS  Google Scholar 

  13. A. Kahraman, H. Karacali, E. Yilmaz, Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics. J. Alloys Compd. 825, 154171 (2020)

    Google Scholar 

  14. H. Mescher, F. Schackmar, H. Eggers, T. Abzieher, M. Zuber, E. Hamann, T. Baumbach, B.S. Richards, G.H. Sosa, U.W. Paetzold, U. Lemmer, Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Appl. Mater. Interfaces 12, 15774 (2020)

    Google Scholar 

  15. X. Zhou, Q. Zhang, L. Gan, X. Li, H. Li, Y. Zhang, D. Golberg, T. Zhai, High—performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 26, 704 (2016)

    Google Scholar 

  16. W. Li, Y. Xu, J. Peng, R. Li, J. Song, H. Huang, L. Cui, Q. Lin, Evaporated perovskite thick junctions for X-Ray detection. ACS Appl. Mater. Interfaces 13, 2971 (2021)

    Google Scholar 

  17. J. Wang, Y. Zhang, J. Chen, Y. Wei, D. Yu, L. Liang, Y. Liu, Y. Wu, W. Shen, X. Li, H. Zeng, Strong polarized photoluminescence CsPbBr 3 nanowire composite films for UV spectral conversion polarization photodetector enhancement. ACS Appl. Mater. Interfaces 13, 36147 (2021)

    Google Scholar 

  18. M. Zhang, L. Wang, L. Meng, X.G. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, H. Zhong, Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection. Adv. Opt. Mater. 6, 1 (2018)

    Google Scholar 

  19. H. Jia, X. Li, Y. Fan, C. Ding, L. Pan, X. Feng, X. Liu, J. Hu, J. Chen, L. Gao, Z. Chen, J. Qiu, Highly efficient broadband solar-blind UV photodetector based on Gd2O3:Eu3+–PMMA composite film. Adv. Mater. Interfaces 7, 1 (2020)

    Google Scholar 

  20. Z. Wang, X. Wang, J. Liu, An efficient nanophotonic hot electron solar-blind UV detector. ACS Photonics 5, 3989 (2018)

    Google Scholar 

  21. X. Chen, W. Mu, Y. Xu, B. Fu, Z. Jia, F.F. Ren, S. Gu, R. Zhang, Y. Zheng, X. Tao, J. Ye, Highly narrow-band polarization-sensitive solar-blind photodetectors based on β-Ga2O3 single crystals. ACS Appl. Mater. Interfaces 11, 7131 (2019)

    Google Scholar 

  22. T. Zhu, J. Su, J. Alvarez, G. Lefèvre, F. Labat, I. Ciofini, T. Pauporté, Response enhancement of self-powered visible-blind UV photodetectors by nanostructured heterointerface engineering. Adv. Funct. Mater. 29, 1 (2019)

    Google Scholar 

  23. N. Hiroshiba, Y. Tabata, S. Yamauhi, Y. Ichikawa, Simple synthesise conditions of WO3 hydrate nanorods by solvothermal process. Trans. Mat. Res. Soc. Japan 39, 423 (2014)

    Google Scholar 

  24. B.R. Panda, A. Chattopadhyay, Synthesis of Au Nanoparticles. J. Nanosci. Nanotechnol. 7, 1911 (2007)

    Google Scholar 

  25. R. Karmakar, A.K. Das, A.K. Meikap, Electrical transport properties of polymer based hematite flexible film. AIP Conf. Proc. 2265, 5 (2020)

    Google Scholar 

  26. A.K. Das, S. Sinha, A. Mukherjee, A.K. Meikap, Enhanced dielectric properties in polyvinyl alcohol–multiwall carbon nanotube composites. Mater. Chem. Phys. 167, 286 (2015)

    Google Scholar 

  27. R. Karmakar, A.K. Das, S. Pramanik, P.K. Kuiri, A.K. Meikap, Tunable dielectric properties and magneto-dielectric coupling of hematite based trap free flexible semiconductor. J. Alloys Compd. 881, 160516 (2021)

    Google Scholar 

  28. S. Wang, H. Xu, T. Hao, P. Wang, X. Zhang, H. Zhang, J. Xue, J. Zhao, Y. Li, In situ XRD and operando spectra-electrochemical investigation of tetragonal WO3-x nanowire networks for electrochromic supercapacitors. NPG Asia Mater. 13, 1 (2021)

    ADS  Google Scholar 

  29. Y.M. Zhao, Y.H. Li, I. Ahmad, D.G. McCartney, Y.Q. Zhu, W.B. Hu, Two-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 89, 16 (2006)

    Google Scholar 

  30. L.S. Dubrovinsky, S.K. Saxena, Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures. Phys. Chem. Miner. 24, 547 (1997)

    ADS  Google Scholar 

  31. P. Drambei, Y. Nakano, Y. Bin, T. Okuno, M. Matsuo, Characterization of PVA and chitosan/PVA blends prepared from aqueous solutions of various Na2SO4 concentrations. Macromol. Symp. 242, 146 (2006)

    Google Scholar 

  32. A.A. Menazea, A.M. Mostafa, E.A. Al-ashkar, Effect of nanostructured metal oxides (CdO, Al2O3, Cu2O) embedded in PVA via Nd: YAG pulsed laser ablation on their optical and structural properties. J. Mol. Struct. 1203, 127374 (2020)

    Google Scholar 

  33. P. Du, Y. Lei, Y. Wu, C. Li, B. Du, Y. Wang, L. Luo, B. Zou, Synthesis of GQDs/W18O49/tetragonal WO3 homostructures for improving the photoelectric properties. J. Alloy and Comp. 893, 162266 (2022)

    Google Scholar 

  34. R. Brahimi, K. Dib, M. Trari, Y. Bessekhouad, Effect of S-do** toward the optical properties of WO3 nanoparticles. Mater. Chem. Phys. 223, 398 (2019)

    Google Scholar 

  35. S. Adhikari, D. Sarkar, H.S. Maiti, Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater. Res. Bull. 49, 325 (2014)

    Google Scholar 

  36. S. Songara, V. Gupta, M.K. Patra, J. Singh, L. Saini, G.S. Gowd, S.R. Vadera, N. Kumar, Tuning of crystal phase structure in hydrated WO3 nanoparticles under wet chemical conditions and studies on their photochromic properties. J. Phys. Chem. Solids 73, 851 (2012)

    ADS  Google Scholar 

  37. M.M.R. Khan, M. Akter, M.K. Amin, M. Younus, N. Chakraborty, synthesis, luminescence and thermal properties of PVA–ZnO–Al2O3 composite films: towards fabrication of sunlight-induced catalyst for organic dye removal. J. Polym. Environ. 26, 3371 (2018)

    Google Scholar 

  38. A. Singhal, M. Kaur, K.A. Dubey, Y.K. Bhardwaj, D. Jain, C.G.S. Pillai, A.K. Tyagi, Polyvinyl alcohol–In2O3 nanocomposite films: synthesis, characterization and gas sensing properties. RSC Adv. 2, 7180 (2012)

    ADS  Google Scholar 

  39. M.M.R. Khan, S. Pal, M.M. Hoque, M.R. Alam, M. Younus, H. Kobayashi, Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. ACS Omega 4, 6144 (2019)

    Google Scholar 

  40. K.K. Akurati, A. Vital, J.P. Dellemann, K. Michalow, T. Graule, D. Ferri, A. Baiker, Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity. Appl. Catal. B Environ. 79, 53 (2008)

    Google Scholar 

  41. B. Bursten, F. Albert Cotton, A. Cowley, B. Hanson, L. Michael, G. Stanley, Strong metal-to-metal quadruple bonds in a series of five isostructural compounds as indicated by photoelectron spectroscopy. J. Am. Chem. Soc. 101, 6244 (1979)

    Google Scholar 

  42. Y.A. Badr, K.M. Abd El-Kader, R.M. Khafagy, Raman spectroscopic study of CdS, PVA composite films. J. Appl. Polym. Sci. 92, 1984 (2004)

    Google Scholar 

  43. R. Zhang, Y. Wang, D. Ma, S. Ahmed, W. Qin, Y. Liu, Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrason. Sonochem. 59, 104731 (2019)

    Google Scholar 

  44. R.F. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, S.P. Nayak, B. Poojary, Microstructural studies on BaCl2 doped poly (vinyl alcohol). Polymer 47, 3591 (2006)

    Google Scholar 

  45. A.P. Shpak, A.M. Korduban, M.M. Medvedskij, V.O. Kandyba, XPS studies of active elements surface of gas sensors based on WO3− x nanoparticles. J. Electron Spectros. Relat. Phenomena 156–158, 172 (2007)

    Google Scholar 

  46. L. Mohan, A.V. Avani, P. Kathirvel, R. Marnadu, R. Packiaraj, J.R. Joshua, N. Nallamuthu, M. Shkir, S. Saravanakumar, Investigation on structural, morphological and electrochemical properties of co-precipitation synthesis of Mn doped WO3 nanoparticles for supercapacitor applications. J. Alloys Compd. 882, 160670 (2021)

    Google Scholar 

  47. K. Thiyagarajan, M. Muralidharan, K. Sivakumar, Defects induced magnetism in WO3 and reduced graphene oxide-WO3 nanocomposites. J. Supercond. Nov. Magn. 31, 117 (2018)

    Google Scholar 

  48. M.B. Johansson, B. Zietz, G.A. Niklasson, L. Österlund, Optical properties of nanocrystalline WO3 and WO3-x thin films prepared by DC magnetron sputtering. J. Appl. Phys. 115, 213510 (2014)

    ADS  Google Scholar 

  49. S. Ram, T.K. Mandal, Photoluminescence in small isotactic, atactic and syndiotactic PVA polymer molecules in water. Chem. Phys. 303, 121 (2004)

    Google Scholar 

  50. D.M. Fernandes, A.A.W. Hechenleitner, S.M. Lima, L.H.C. Andrade, A.R.L. Caires, E.A.G. Pineda, Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films. Mater. Chem. Phys. 128, 371 (2011)

    Google Scholar 

  51. B.K. Ridley, Specific negative resistance in solids. Proc. Phys. Soc. 82, 954 (1963)

    ADS  Google Scholar 

  52. M.D. Pickett, J. Borghetti, J.J. Yang, G.M. Ribeiro, R.S. Williams, Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv. Mater. 23, 1730 (2011)

    Google Scholar 

  53. J. Kim, C. Ko, A. Frenzel, S. Ramanathan, J.E. Hoffman, Nanoscale imaging and control of resistance switching in VO 2 at room temperature. Appl. Phys. Lett. 96, 213106 (2010)

    ADS  Google Scholar 

  54. C.N. Berglund, Thermal filaments in vanadium dioxide. IEEE Trans. Electron Devices 16, 432 (1969)

    ADS  Google Scholar 

  55. S. Fujisaki, H. Ishiwara, Y. Fujisaki, Low-voltage operation of ferroelectric poly (vinylidene fluoride-trifluoroethylene) copolymer capacitors and metal-ferroelectric-insulator-semiconductor diodes. Appl. Phys. Lett. 90, 88 (2007)

    Google Scholar 

  56. K.N. Ambasankar, L. Bhattacharjee, S.K. Jat, R.R. Bhattacharjee, K. Mohanta, Study of electrical charge storage in polymer-carbon quantum dot composite. Chem. Select 2, 4241 (2017)

    Google Scholar 

  57. A.K. Das, R.N. Bhowmik, A.K. Meikap, Effect of trap states and microstructure on charge carrier conduction mechanism through semicrystalline poly (vinyl alcohol) granular film. Solid State Commun. 273, 50 (2018)

    ADS  Google Scholar 

  58. A.K. Das, A. Mukherjee, K. Baba, R. Hatada, R. Bhowmik, A.K. Meikap, Current-voltage hysteresis behavior of PVA-assisted functionalized single-walled carbon nanotube free-standing film. J. Phys. Chem. C 122, 29094 (2018)

    Google Scholar 

  59. F.C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1 (2014)

    Google Scholar 

  60. R. Karmakar, A.K. Das, S. Atta, A.K. Meikap, The role of bias voltage in charge carrier transport mechanism of organic semiconductor. Mater. Today Commun. 31, 103775 (2022)

    Google Scholar 

  61. A.K. Das, R. Dharmana, A. Mukherjee, K. Baba, R. Hatada, A.K. Meikap, Influence of functional group on the electrical transport properties of polyvinyl alcohol grafted multiwall carbon nanotube composite thick film. J. Appl. Phys. 123, 145105 (2018)

    ADS  Google Scholar 

  62. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989)

    ADS  Google Scholar 

  63. R. Datta, S.K. Pradhan, S. Chatterjee, S. Majumdar, S.K. De, Dielectric and impedance spectroscopy of Nd2CoIrO6 double perovskite. J. Alloys Compd. 876, 495702 (2021)

    Google Scholar 

  64. P.M. Ajayan, Y.P. Zhao, T.M. Lu, G.C. Wang, G. Ramanath, B.Q. Wei, A. Rubio, S. Roche, Frequency-dependent electrical transport in carbon nanotubes. Phys. Rev. B - Condens. Matter Mater. Phys. 64, 1 (2001)

    Google Scholar 

  65. J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, An alternative representation of impedance spectra of ceramics. Mater. Res. Bull. 35, 727 (2000)

    Google Scholar 

  66. C. Roşu, D.M. Maximean, V. Cîrcu, Y. Molard, T. Roisnel, Differential negative resistance in the current–voltage characteristics of a new palladium (II) metallomesogen. Liq. Cryst. 38, 757 (2011)

    Google Scholar 

  67. K.L. Chopra, Avalanche-induced negative resistance in thin oxide films. J. Appl. Phys. 36, 184 (1965)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by DST-BT (Project no. 326 (Sanc.)/ST/P/S&T/16G-21/2018 dated 06.03.2019), Govt. of West Bengal for their financial support during this work. The authors are also thankful to COE NIT Durgapur.

Funding

Department of Science and Technology, Government of West Bengal, 326 (Sanc.)/ST/P/S&T/16G-21/2018,Ajit Kumar Meikap.

Author information

Authors and Affiliations

Authors

Contributions

RK: Investigation, Formal analysis, Writing – original draft, Validation. AKD: Writing—original draft, Validation. SP: Resources, Validation. PKK: Resources, Validation. AKM: Supervision, Conceptualization, Methodology, Visualization, Validation, Project administration.

Corresponding author

Correspondence to Ajit Kumar Meikap.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

339_2022_6257_MOESM1_ESM.docx

Supplementary information contains the details study of FESEM image, FTIR, UV-vis-NIR and PL spectroscopy of PVA based W-WO3 composite films. It also includes details study of voltage and temperature-dependent frequency variation of real and imaginary part impedance spectroscopy, Nyquist plot, phase angle, and real part of dielectric constant of W-WO3, PW0.1 and PW0.5 samples. Supplementary file1 (DOCX 12281 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, R., Das, A.K., Pramanik, S. et al. Investigation of negative resistance regions in W-WO3 nanoparticles and UV-B light detection properties of PVA-W-WO3 flexible composite films. Appl. Phys. A 128, 1102 (2022). https://doi.org/10.1007/s00339-022-06257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06257-7

Keywords

Navigation