Log in

Polycarbosilane as a modulator for reaction-bonded silicon carbide processing of GNPs/Si mixtures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

When graphene is used to enhance reaction-bonded silicon carbide (RBSC), the problem of graphene being corroded by molten silicon should be considered. In this work, the polycarbosilane (PCS) was uniformly adhered to the surface of graphene nanoplatelets (GNPs) by the sol–gel method, and SiC barrier formed after pyrolysis. The structural evolution of GNPs in reaction sintering and the chemical structure of GNPs-PCS were investigated. The results showed that GNPs after siliconizing showed a porous structure, consisting of nanometer SiC particles on the surface. The ceramic yield and final pyrolysis temperature of PCS were reduced after mixing with GNPs and divinylbenzene (DVB). The SiC formed by the pyrolysis of PCS was uniformly distributed among GNPs. SiC whiskers (SiCw) were observed in the sample of GNPs and GNPs-PCS after siliconizing. The difference and formation mechanism of SiCw in these two samples were discussed. After PCS modification and pyrolysis, GNPs survived in the loss on ignition experiment. The prepared composite powder further improved the toughness of GNPs/RBSC by 14.69%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  ADS  Google Scholar 

  2. H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang, The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 44, 1018–1021 (2013). https://doi.org/10.1002/jrs.4312

    Article  ADS  Google Scholar 

  3. F. Liu, M. Wang, Y. Chen, J. Gao, T. Ma, Mechanical properties and microstructure of reaction sintering SiC ceramics reinforced with graphene-based fillers. Appl. Phys. A Mater. 125, 680 (2019). https://doi.org/10.1007/s00339-019-2975-0

    Article  ADS  Google Scholar 

  4. F. Liu, M. Wang, Y. Chen, J. Gao, Thermal stability of graphene in inert atmosphere at high temperature. J. Solid State Chem. 276, 100–103 (2019). https://doi.org/10.1016/j.jssc.2019.04.008

    Article  ADS  Google Scholar 

  5. B. Zhu, Y. Zhu, X. Li, F. Zhao, Effect of ceramic bonding phases on the thermo-mechanical properties of Al2O3–C refractories. Ceram. Int. 39, 6069–6076 (2013). https://doi.org/10.1016/j.ceramint.2013.01.024

    Article  Google Scholar 

  6. O. Haibo, L. Hejun, Q. Lehua, L. Zhengjia, W. Jian, W. Jianfeng, Synthesis of a silicon carbide coating on carbon fibers by deposition of a layer of pyrolytic carbon and reacting it with silicon monoxide. Carbon 46, 1339–1344 (2008). https://doi.org/10.1016/j.carbon.2008.05.017

    Article  Google Scholar 

  7. R. Gadiou, S. Serverin, P. Gibot, C. Vix-Guterl, The synthesis of SiC and TiC protective coatings for carbon fibers by the reactive replica process. J. Eur. Ceram. Soc. 28, 2265–2274 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.02.022

    Article  Google Scholar 

  8. W. **e, Z. Mirza, G. Möbus, S. Zhang, Novel synthesis and characterization of high quality silicon carbide coatings on carbon fibers. J. Am. Ceram. Soc. 95, 1878–1882 (2012). https://doi.org/10.1111/j.1551-2916.2012.05153.x

    Article  Google Scholar 

  9. N. Song, H.B. Zhang, H. Liu, J.Z. Fang, Effects of SiC whiskers on the mechanical properties and microstructure of SiC ceramics by reactive sintering. Ceram Int 43, 6786–6790 (2017). https://doi.org/10.1016/j.ceramint.2017.02.095

    Article  Google Scholar 

  10. Z. He, P. Lian, Y. Song, Z. Liu, J. Song, J. Zhang, W. Liu, Protecting nuclear graphite from liquid fluoride salt and oxidation by SiC coating derived from polycarbosilane. J. Eur. Ceram. Soc. 38, 453–462 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.09.031

    Article  Google Scholar 

  11. L. Duan, X. Zhao, Y. Wang, Effects of polycarbosilane interface on oxidation, mechanical, and ablation properties of carbon fiber-reinforced composites. Ceram. Int. 44, 22919–22926 (2018). https://doi.org/10.1016/j.ceramint.2018.09.087

    Article  Google Scholar 

  12. Z. Zhang, F. Zhou, E.J. Lavernia, On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction. Metall. Mater. Trans. A 34, 1349–1355 (2003). https://doi.org/10.1007/s11661-003-0246-2

    Article  Google Scholar 

  13. B. Heidenreich, M. Gahr, E. Medvedovski, Biomorphic reaction bonded silicon carbide ceramics for armor applications. Ceram. Armor Armor Syst. II Ceram. Trans. 178, 45–53 (2005). https://doi.org/10.1002/9781118408100.ch4

    Article  Google Scholar 

  14. M. Tiegel, R. Hosseinabadi, S. Kuhn, A. Herrmann, C. Rüssel, Young׳ s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses. Ceram. Int. 41, 7267–7275 (2015). https://doi.org/10.1016/j.ceramint.2015.01.144

    Article  Google Scholar 

  15. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533–538 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  Google Scholar 

  16. R. Zhou, L. Liao, Z. Chen, L. Zhong, X. Xu, Y. Han, R. Yao, Fabrication of monolithic rGO/SiC (O) nanocomposite ceramics via precursor (polycarbosilane-vinyltriethoxysilane-graphene oxide) route. Ceram. Int. 44, 14929–14934 (2018). https://doi.org/10.1016/j.ceramint.2018.05.084

    Article  Google Scholar 

  17. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 66, 594–597 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.012

    Article  Google Scholar 

  18. F. Bouzat, A.R. Graff, R. Lucas, S. Foucaud, Preparation of C/SiC ceramics using a preceramic polycarbosilane synthesized via hydrosilylation. J. Eur. Ceram. Soc. 36, 2913–2921 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.032

    Article  Google Scholar 

  19. Z. Yu, M. Huang, Y. Fang, R. Li, J. Zhan, B. Zeng, L. Zhang, Modification of a liquid polycarbosilane with 9-BBN as a high-ceramic-yield precursor for SiC. React. Funct. Polym. 70(6), 334–339 (2010). https://doi.org/10.1016/j.reactfunctpolym.2010.02.007

    Article  Google Scholar 

  20. Y. de Hazan, D. Penner, SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems. J. Eur. Ceram. Soc. 37, 5205–5212 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.03.021

    Article  Google Scholar 

  21. H. Zhong, Z. Wang, H. Zhou, D. Ni, Y. Kan, Y. Ding, S. Dong, Properties and microstructure evolution of Cf/SiC composites fabricated by polymer impregnation and pyrolysis (PIP) with liquid polycarbosilane. Ceram. Int. 43, 7387–7392 (2017). https://doi.org/10.1016/j.ceramint.2017.02.100

    Article  Google Scholar 

  22. L. He, Z. Zhang, X. Yang, L. Jiao, Y. Li, C. Xu, Liquid polycarbosilanes: synthesis and evaluation as precursors for SiC ceramic. Polym. Int. 64(8), 979–985 (2015). https://doi.org/10.1002/pi.4889

    Article  Google Scholar 

  23. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Cruege, P.V. Huong, M. Monthioux, Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material. J. Mater. Sci. 26(5), 1333–1345 (1991). https://doi.org/10.1007/BF00544474

    Article  ADS  Google Scholar 

  24. N. Liao, Y. Li, S. **, Y. Xu, S. Sang, Z. Deng, Combined effects of boron carbide, silicon, and MWCNTs in alumina-carbon refractories on their microstructural evolution. J. Am. Ceram. Soc. 100, 443–450 (2017). https://doi.org/10.1111/jace.14543

    Article  Google Scholar 

  25. A.H. Heuer, K.P.D. Lagerlof, Oxygen self-diffusion in corundum (alpha-Al2O3): a conundrum. Philos. Mag. Lett. 79(8), 619–627 (1999). https://doi.org/10.1080/095008399177002

    Article  ADS  Google Scholar 

  26. R. Vishwakarma, M.S. Rosmi, K. Takahashi, Y. Wakamatsu, Y. Yaakob, M.I. Araby, M. Tanemura, Transfer free graphene growth on SiO2 substrate at 250 C. Sci. Rep. UK 7(1), 1–8 (2017). https://doi.org/10.1038/srep43756

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bei**g Natural Science Foundation (6192020), and National Natural Science Foundation of China (31971742).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Chen or Jianmin Gao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, M., Chen, Y. et al. Polycarbosilane as a modulator for reaction-bonded silicon carbide processing of GNPs/Si mixtures. Appl. Phys. A 128, 767 (2022). https://doi.org/10.1007/s00339-022-05917-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05917-y

Keywords

Navigation