Log in

Photoluminescence enhancement of silicon nanocrystals by excimer laser implanted gold nanoparticles

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To enhance the photoluminescence of silicon nanocrystals, gold nanoparticles are incorporated into a silicon oxide matrix by excimer laser-based implantation. By this simple method, the gold nanoparticles are placed under the surface in a scratch resistant manner. Optical absorption measurements and SEM analyses show the essential properties of the gold implantation. The silicon nanocrystals are characterized by Raman and photoluminescence measurements. A more than twofold enhancement of the photoluminescence of the silicon nanocrystals, depending on the number of applied laser pulses during gold implantation, is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Pavesi, R. Turan, Silicon Nanocrystals Fundamentals, Synthesis and Applications, 1st edn. (Wiley-VCH, Weinheim, 2010), pp. 1–447

  2. A.D. Yoffe, Adv. Phys. 42, 173 (1993). https://doi.org/10.1080/00018739300101484

    Article  ADS  Google Scholar 

  3. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990). https://doi.org/10.1063/1.103561

    Article  ADS  Google Scholar 

  4. A.G. Cullis, L.T. Canham, Nature 353, 335 (1991). https://doi.org/10.1038/353335a0

    Article  ADS  Google Scholar 

  5. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Appl. Phys. Lett. 80, 661 (2002). https://doi.org/10.1063/1.1433906

    Article  ADS  Google Scholar 

  6. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé, K. Chan, Appl. Phys. Lett. 68, 1377 (1996). https://doi.org/10.1063/1.116085

    Article  ADS  Google Scholar 

  7. L. Pavesi, L.D. Negro, C. Mazzoleni, G. Franzò, F. Priolo, Nature 408, 440 (2000). https://doi.org/10.1038/35044012

    Article  ADS  Google Scholar 

  8. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, V. Paillard, Phys. Rev. B 62, 15942 (2000). https://doi.org/10.1103/PhysRevB.62.15942

    Article  ADS  Google Scholar 

  9. R.J. Walters, G.I. Bourianoff, H.A. Atwater, Nature. Mater. 4, 143 (2005). https://doi.org/10.1038/nmat1307

    Article  ADS  Google Scholar 

  10. D. Jurbergs, E. Rogo**a, Appl. Phys. Lett. 88, 233116 (2006). https://doi.org/10.1063/1.2210788

    Article  ADS  Google Scholar 

  11. J.S. Biteen, D. Pacifici, N.S. Lewis, H.A. Atwater, Nano. Lett. 5, 9 (2005). https://doi.org/10.1021/nl051207z

    Article  Google Scholar 

  12. Y. Kanemitsu, N. Shimizu, T. Komoda, P.L.F. Hemment, B.J. Sealy, Phys. Rev. B. (1996). https://doi.org/10.1103/PhysRevB.54.R14329

    Article  Google Scholar 

  13. T. Shimizu-Iwayama, K. Fujita, J. Appl. Phys 75, 7779 (1994). https://doi.org/10.1063/1.357031

    Article  ADS  Google Scholar 

  14. A.J. Kenyon, P.F. Trwoga, C.W. Pitt, J. Appl. Phys. 79, 9291 (1996). https://doi.org/10.1063/1.362605

    Article  ADS  Google Scholar 

  15. X.L. Wu, Appl. Phys. Lett. 69, 523 (1996). https://doi.org/10.1063/1.117774

    Article  ADS  Google Scholar 

  16. T.-W. Kim, C.-H. Cho, B.-H. Kim, S.-J. Park, Appl. Phys. Lett 88, 123102 (2006). https://doi.org/10.1063/1.2187434

    Article  ADS  Google Scholar 

  17. J. Goffard, D. Gérard, P. Miska, A.-L. Baudrion, R. Deturche, J. Plain, Sci. Rep 3, 2672 (2013). https://doi.org/10.1038/srep02672

    Article  Google Scholar 

  18. T. Fricke-Begemann, N. Wang, P. Peretzki, M. Seibt, J. Ihlemann, J. Appl. Phys. 118, 124308 (2015). https://doi.org/10.1063/1.4931670

    Article  ADS  Google Scholar 

  19. S. Charvet, R. Madelon, F. Gourbilleau, R. Rizk, J. Appl. Phys 85, 4032 (1999). https://doi.org/10.1063/1.370307

    Article  ADS  Google Scholar 

  20. S. Botti, R. Coppola, J. Appl. Phys. 88, 3396 (2000). https://doi.org/10.1063/1.1288228

    Article  ADS  Google Scholar 

  21. G. Ledoux, J. Gong, F. Huisken, Appl. Phys. Lett 79, 4028 (2001). https://doi.org/10.1063/1.1426273

    Article  ADS  Google Scholar 

  22. A.G. Cullis, J. Appl. Phys 82, 909 (1997). https://doi.org/10.1063/1.366536

    Article  ADS  Google Scholar 

  23. T. Schmidt, A.I. Chizhik, A.M. Chizhik, K. Potrick, A.J. Meixner, F. Huisken, Phys. Rev. B 86, 125302 (2012). https://doi.org/10.1103/PhysRevB.86.125302

    Article  ADS  Google Scholar 

  24. K.T. Shimizu, W.K. Woo, B.R. Fisher, H.J. Eisler, M.G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002). https://doi.org/10.1103/PhysRevLett.89.117401

    Article  ADS  Google Scholar 

  25. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, M. Artemyev, Nano Lett. 2, 1449 (2002). https://doi.org/10.1021/nl025819k

    Article  ADS  Google Scholar 

  26. J.S. Biteen, N.S. Lewis, H.A. Atwater, Appl. Phys. Lett. 88, 131109 (2006). https://doi.org/10.1063/1.2191411

    Article  ADS  Google Scholar 

  27. H. Stolzenburg, P. Peretzki, N. Wang, M. Seibt, J. Ihlemann, Appl. Surf. Sci. 374, 138 (2016). https://doi.org/10.1016/j.apsusc.2015.10.092

    Article  ADS  Google Scholar 

  28. M. Heinz, V.V. Srabionyan, L.A. Avakyan, A.L. Bugaev, A.V. Skidanenko, V.V. Pryadchenko, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, L.A. Bugaev, J. Alloys Compd. 736, 152 (2018). https://doi.org/10.1016/j.jallcom.2017.11.122

    Article  Google Scholar 

  29. M. Lopez, B. Garrido, C. García, P. Pellegrino, A. Pérez-Rodríguez, J.R. Morante, C. Bonafos, M. Carrada, A. Claverie, Appl. Phys. Lett. 80, 1637 (2002). https://doi.org/10.1063/1.1456970

    Article  ADS  Google Scholar 

  30. J.H. Parker, D.W. Feldman, M. Ashkin, Phys. Rev. 155, 3 (1967). https://doi.org/10.1103/PhysRev.155.712

    Article  Google Scholar 

  31. J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, X. **e, Appl. Phys. Lett. 69, 2 (1996). https://doi.org/10.1063/1.117371

    Article  Google Scholar 

  32. Y. Kanzawa, T. Kageyama, S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, Sol. St. Com. 102, 7 (1997). https://doi.org/10.1016/S0038-1098(96)00774-0

    Article  Google Scholar 

  33. S. Takeoka, M. Fujii, S. Hayashi, Phys. Rev. B 62, 24 (2000). https://doi.org/10.1103/PhysRevB.62.16820

    Article  Google Scholar 

  34. Y. Yu, G. Fan, A. Fermi, R. Mazzaro, V. Morandi, P. Ceroni, D.-M. Smilgies, B.A. Korgel, J. Phys. Chem. C 121, 23240 (2017). https://doi.org/10.1021/acs.jpcc.7b08054

    Article  Google Scholar 

  35. I.D. Wolf, J. Raman Spectrosc. 30, 877 (1999)

    Article  ADS  Google Scholar 

  36. L. Khriachtchev, M. Räsänen, S. Novikov, Appl. Phys. Lett. 88, 013102 (2006). https://doi.org/10.1063/1.2161399

    Article  ADS  Google Scholar 

  37. A. La Magna, G. Nicotra, C. Bongiorno, C. Spinella, M.G. Grimaldi, E. Rimini, L. Caristia, S. Coffa, Appl. Phys. Lett. 90, 183101 (2007). https://doi.org/10.1063/1.2734398

    Article  ADS  Google Scholar 

  38. A.T. Voutsas, M.K. Hatalis, J. Boyce, A. Chiang, J. Appl. Phys. 78, 6999 (1995). https://doi.org/10.1063/1.360468

    Article  ADS  Google Scholar 

  39. E.M. Purcell, NSSB. (1946). https://doi.org/10.1007/978-1-4615-1963-8_40

    Article  Google Scholar 

  40. J. Gersten, A.J. Nitzan, Chem. Phys. 75, 1139 (1981). https://doi.org/10.1063/1.442161

    Article  ADS  Google Scholar 

  41. A.L. Muñoz-Rosas, A. Rodríguez-Gómez, J.A. Arenas-Alatorre, J.C. Alonso-Huitrón, RSC Advances 5, 92923 (2015). https://doi.org/10.1039/C5RA19114A

    Article  ADS  Google Scholar 

  42. A.L. Tchebotareva, M.J.A. de Dood, J.S. Biteen, H.A. Atwater, A. Polman, J. Lumin. 114, 137–144 (2005). https://doi.org/10.1016/j.jlumin.2004.12.014

    Article  Google Scholar 

  43. J.S. Biteen, L.A. Sweatlock, H. Mertens, N.S. Lewis, A. Polman, H.A. Atwater, J. Phys. Chem. C 111, 13372–13377 (2007). https://doi.org/10.1021/jp074160+

    Article  Google Scholar 

  44. J. Ihlemann, J. Meinertz, G. Danev, Appl. Phys. Lett. 101, 091901 (2012). https://doi.org/10.1063/1.4748127

    Article  ADS  Google Scholar 

  45. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, 1st edn. (Springer-Verlag Berlin Heidelberg New York, 1995), pp. 42–53

  46. J. Richter, J. Meinertz, J. Ihlemann, Appl. Phys. A 104, 759 (2011). https://doi.org/10.1007/s00339-011-6451-8

    Article  ADS  Google Scholar 

Download references

Funding

We acknowledge the financial support of the Deutsche Forschungsgemeinschaft, project IH 17/27-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Janos Richter.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, L.J., Ihlemann, J. Photoluminescence enhancement of silicon nanocrystals by excimer laser implanted gold nanoparticles. Appl. Phys. A 128, 764 (2022). https://doi.org/10.1007/s00339-022-05906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05906-1

Keywords

Navigation