Log in

Increasing of the ON-state current of 5.1 nm MoTe2 in-plane Schottky barrier field-effect transistors by O-passivation and W-do**

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Through first-principles calculations, we demonstrate that the combined application of tungsten do** (W-do**) and oxygen passivation (O-passivation) can well make the Schottky barrier field-effect transistors (SBFETs) based on MoTe2 with 1 T–2H–1 T structure represent an excellent candidate for application in 5.1 nm SBFETs. Our results show that: W-do** in the channel 2H–MoTe2 near the source of the intrinsic MoTe2–SBFET can make ION increased just slightly as the number of W-do** increases, but the ION is still lower than 900 uA/um (the ON-state currents requirement of ITRS) when the number of W-do** is to 4 periods(4P), so W-do** is not an ideal method to increase ION; the ION of the MoTe2–SBFET can be increased from 642.2 uA/um to 941.7 uA/um by the combined application of W-do** and O-passivation which meet the ON-state currents requirement of ITRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.D. Franklin, DEVICE TECHNOLOGY Nanomaterials in transistors: From high-performance to thin-film applications. Science (New York) 349, 2750 (2015)

    Article  Google Scholar 

  2. P. Sang, X. Ma, Q. Wang, W. Wei, F. Wang, J. Wu, X. Zhan, Y. Li, J. Chen, Toward high-performance monolayer graphdiyne transistor: Strain engineering matters. Appl. Surf. Sci. 536, 147836 (2021)

    Article  Google Scholar 

  3. Y.-Y. Liu, B.-L. Li, S.-Z. Chen, X. Jiang, K.-Q. Chen, Effect of room temperature lattice vibration on the electron transport in graphene nanoribbons. Appl. Phys. Lett. 111, 133107 (2017)

    Article  ADS  Google Scholar 

  4. R. Quhe, X. Peng, Y. Pan, M. Ye, Y. Wang, H. Zhang, S. Feng, Q. Zhang, J. Shi, J. Yang, D. Yu, M. Lei, J. Lu, Can a black phosphorus schottky barrier transistor be good enough? ACS Appl. Mater. Interfaces 9, 3959–3966 (2017)

    Article  Google Scholar 

  5. Y. Pan, Y. Dan, Y. Wang, M. Ye, H. Zhang, R. Quhe, X. Zhang, J. Li, W. Guo, L. Yang, J. Lu, Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces 9, 12694–12705 (2017)

    Article  Google Scholar 

  6. N. Huo, S. Tongay, W. Guo, R. Li, C. Fan, F. Lu, J. Yang, B. Li, Y. Li, Z. Wei, Novel optical and electrical transport properties in atomically thin WSe 2 /MoS 2 p-n heterostructures. Adv. Electron. Mater. 1, 1400066 (2015)

    Article  Google Scholar 

  7. Y. Ren, P. Liu, B. Zhou, X. Zhou, G. Zhou, Crystallographic characterization of black phosphorene and its application in nanostructures. Phys. Rev. Applied 12, 610 (2019)

    Article  Google Scholar 

  8. J. Zhao, H. Zeng, G. Yao, Computational design of a polymorph for 2D III-V orthorhombic monolayers by first principles calculations: excellent anisotropic, electronic and optical properties. Phys. Chem. Chem. Phys. 23, 3771–3778 (2021)

    Article  Google Scholar 

  9. Y. Ren, X. Zhou, G. Zhou, Edge and sublayer degrees of freedom for phosphorene nanoribbons with twofold-degenerate edge bands via electric field. Phys. Rev. B. 103, 045405 (2021)

    Article  ADS  Google Scholar 

  10. F. Ning, S.-Z. Chen, Y. Zhang, G.-H. Liao, P.-Y. Tang, Z.-L. Li, L.-M. Tang, Interfacial charge transfers and interactions drive rectifying and negative differential resistance behaviors in InAs/graphene van der Waals heterostructure. Appl. Surf. Sci. 496, 143629 (2019)

    Article  Google Scholar 

  11. B. Dubertret, T. Heine, M. Terrones, The rise of two-dimensional materials. Acc. Chem. Res. 48, 1–2 (2015)

    Article  Google Scholar 

  12. I. Choudhuri, P. Bhauriyal, B. Pathak, Recent advances in graphene-like 2D materials for spintronics applications. Chem. Mater. 31, 8260–8285 (2019)

    Article  Google Scholar 

  13. W. Cao, J. Kang, D. Sarkar, W. Liu, K. Banerjee, 2D semiconductor FETs—projections and design for Sub-10 nm VLSI. IEEE Trans. Electron Devices 62, 3459–3469 (2015)

    Article  ADS  Google Scholar 

  14. L. Liu, Y. Lu, J. Guo, On Monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices 60, 4133–4139 (2013)

    Article  ADS  Google Scholar 

  15. A. Nourbakhsh, A. Zubair, R.N. Sajjad, A.K.G. Tavakkoli, W. Chen, S. Fang, X. Ling, J. Kong, M.S. Dresselhaus, E. Kaxiras, K.K. Berggren, D. Antoniadis, T. Palacios, MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 16, 7798–7806 (2016)

    Article  ADS  Google Scholar 

  16. Z.-Q. Fan, X.-W. Jiang, J.-W. Luo, L.-Y. Jiao, R. Huang, S.-S. Li, L.-W. Wang, In-plane Schottky-barrier field-effect transistors based on 1 T /2 H heterojunctions of transition-metal dichalcogenides. Phys. Rev. B 96, 165402 (2017)

    Article  ADS  Google Scholar 

  17. R. Sivasamy, F. Quero, K. Paredes-Gil, K.M. Batoo, M. Hadi, E.H. Raslam, Comparison of the electronic, optical and photocatalytic properties of MoSe2, InN, and MoSe2/InN heterostructure nanosheet-A first-principle study. Mater. Sci. Semicond. Process. 131, 105861 (2021)

    Article  Google Scholar 

  18. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, K. Banerjee, Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013)

    Article  ADS  Google Scholar 

  19. D. Braga, I. Gutiérrez Lezama, H. Berger, A.F. Morpurgo, Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 12, 5218–5223 (2012)

    Article  ADS  Google Scholar 

  20. H. Zhao, F. **e, Y. Liu, B. Bian, G. Yang, Y. Ding, Y. Gu, Y. Yu, X. Zhang, X. Huo, B. Hua, X. Ni, Q. Fan, X. Gu, Van der Waals heterostructures of Janus XSeTe (X = Mo, W) and arsenene monolayers: A first principles study. Mater. Sci. Semicond. Process. 123, 105588 (2021)

    Article  Google Scholar 

  21. Z.-Q. Fan, X.-W. Jiang, J. Chen, J.-W. Luo, Improving performances of in-plane transition-metal dichalcogenide schottky barrier field-effect transistors. ACS Appl. Mater. Interfaces 10, 19271–19277 (2018)

    Article  Google Scholar 

  22. F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013)

    Article  ADS  Google Scholar 

  23. R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris, M. Steiner, Electroluminescence in single layer MoS2. Nano Lett. 13, 1416–1421 (2013)

    Article  ADS  Google Scholar 

  24. X.-X. Li, Z.-Q. Fan, P.-Z. Liu, M.-L. Chen, X. Liu, C.-K. Jia, D.-M. Sun, X.-W. Jiang, Z. Han, V. Bouchiat, J.-J. Guo, J.-H. Chen, Z.-D. Zhang, Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nat. Commun. 8, 970 (2017)

    Article  ADS  Google Scholar 

  25. B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011)

    Article  Google Scholar 

  26. K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. **ong, Q. Liu, J. He, Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017)

    Article  ADS  Google Scholar 

  27. R.K. Ghosh, S. Mahapatra, Monolayer transition metal dichalcogenide channel-based tunnel transistor. IEEE J. Electron Devices Soc. 1, 175–180 (2013)

    Article  Google Scholar 

  28. X.-W. Jiang, S.-S. Li, Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides. Appl. Phys. Lett. 104, 193510 (2014)

    Article  ADS  Google Scholar 

  29. F. Güller, A.M. Llois, J. Goniakowski, C. Noguera, Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2 WS2 and other transition metal dichalcogenide zigzag ribbons. Phys. Rev. B. 91, 075407 (2015)

    Article  ADS  Google Scholar 

  30. Y. Guo, D. Sun, B. Ouyang, A. Raja, J. Song, T.F. Heinz, L.E. Brus, Probing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS2 crystals. Nano Lett. 15, 5081–5088 (2015)

    Article  ADS  Google Scholar 

  31. S.S. Chou, Y.-K. Huang, J. Kim, B. Kaehr, B.M. Foley, P. Lu, C. Dykstra, P.E. Hopkins, C.J. Brinker, J. Huang, V.P. Dravid, Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. J. Am. Chem. Soc. 137, 1742–1745 (2015)

    Article  Google Scholar 

  32. A. Ambrosi, Z. Sofer, M. Pumera, 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 51, 8450–8453 (2015)

    Article  Google Scholar 

  33. Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, X.-A. Zhang, Controllable 2H-to-1T’ phase transition in few-layer MoTe2. Nanoscale 10, 19964–19971 (2018)

    Article  Google Scholar 

  34. X. Zhang, Z. **, L. Wang, J.A. Hachtel, E. Villarreal, Z. Wang, T. Ha, Y. Nakanishi, C.S. Tiwary, J. Lai, L. Dong, J. Yang, R. Vajtai, E. Ringe, J.C. Idrobo, B.I. Yakobson, J. Lou, V. Gambin, R. Koltun, P.M. Ajayan, Low contact barrier in 2H/1T’ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces. 11, 12777–12785 (2019)

    Article  Google Scholar 

  35. Y. Katagiri, T. Nakamura, A. Ishii, C. Ohata, M. Hasegawa, S. Katsumoto, T. Cusati, A. Fortunelli, G. Iannaccone, G. Fiori, S. Roche, J. Haruyama, Gate-tunable atomically thin lateral MoS2 schottky junction patterned by electron beam. Nano Lett. 16, 3788–3794 (2016)

    Article  ADS  Google Scholar 

  36. R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014)

    Article  ADS  Google Scholar 

  37. Z.Q. Fan, Z.H. Zhang, S.Y. Yang, High-performance 5 1 nm in-plane Janus WSeTe Schottky barrier field effect transistors. Nanoscale 12, 21750–21756 (2020)

    Article  Google Scholar 

  38. Q. Liu, J.J. Li, D. Wu, X.Q. Deng, Z.H. Zhang, Z.Q. Fan, K.Q. Chen, Gate-controlled reversible rectifying behavior investigated in a two-dimensional MoS2 diode. Phys. Rev. B 104, 045412 (2021)

    Article  ADS  Google Scholar 

  39. A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6, 5820–5825 (2014)

    Article  ADS  Google Scholar 

  40. S. Wang, A. Robertson, J.H. Warner, Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev. 47, 6764–6794 (2018)

    Article  Google Scholar 

  41. F. Zhang, Y. Lu, D.S. Schulman, T. Zhang, K. Fujisawa, Z. Lin, Y. Lei, A.L. Elias, S. Das, S.B. Sinnott, M. Terrones, Carbon do** of WS2 monolayers: Bandgap reduction and p-type do** transport. Sci. Adv. 5, eaav5003 (2019)

    Article  ADS  Google Scholar 

  42. Y. Wang, A. Slassi, M.-A. Stoeckel, S. Bertolazzi, J. Cornil, D. Beljonne, P. Samorì, Do** of monolayer transition-metal dichalcogenides via physisorption of aromatic solvent molecules. J. Phys. Chem. Lett. 10, 540–547 (2019)

    Article  Google Scholar 

  43. Y. Liu, Z. Gao, Y. Tan, F. Chen, Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects. ACS Nano 12, 10529–10536 (2018)

    Article  Google Scholar 

  44. H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, Z. Ni, Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. ACS Nano 8, 5738–5745 (2014)

    Article  Google Scholar 

  45. J. Lee, J. Heo, H.Y. Lim, J. Seo, Y. Kim, J. Kim, U. Kim, Y. Choi, S.H. Kim, Y.J. Yoon, T.J. Shin, J. Kang, S.K. Kwak, J.Y. Kim, H. Park, Defect-induced in situ atomic do** in transition metal dichalcogenides via liquid-phase synthesis toward efficient electrochemical activity. ACS Nano 14, 17114–17124 (2020)

    Article  Google Scholar 

  46. L. Dou, Z. Fan, P. **. Mater. Sci. Semi. Process 139, 106327 (2022)

    Article  Google Scholar 

  47. X.-W. Jiang, J. Gong, N. Xu, S.-S. Li, J. Zhang, Y. Hao, L.-W. Wang, Enhancement of band-to-band tunneling in mono-layer transition metal dichalcogenides two-dimensional materials by vacancy defects. Appl. Phys. Lett. 104, 23512 (2014)

    Article  Google Scholar 

  48. A. Samipour, D. Dideban, H. Heidari, Impact of an antidote vacancy on the electronic and transport properties of germanene nanoribbons: A first principles study. J. Phys. Chem. Solids 138, 109289 (2020)

    Article  Google Scholar 

  49. J. Wu, Z. Fan, J. Chen, X. Jiang, Atomic defects in monolayer WSe 2 tunneling FETs studied by systematic ab initio calculations. Appl. Phys. Express 11, 54001 (2018)

    Article  ADS  Google Scholar 

  50. E. Norouzzadeh, S. Mohammadi, M. Moradinasab, Tunneling FET based on defect-free, vacancy-defected, and passivated monolayer PtSe2 channel: a first principles study. Mater. Sci. Semicond. Process. 138, 106258 (2022)

    Article  Google Scholar 

  51. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  52. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, M.-E. Lee, S.T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M.L.N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, K. Stokbro, QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys.: Condens. Matter 32, 15901 (2020)

    Google Scholar 

  53. I. Büttiker, P. Landauer, Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985)

    Article  ADS  Google Scholar 

  54. C.H. Chang, X. Fan, S.H. Lin, J.L. Kuo, Orbital analysis of electronic structure and phonon dispersion in MoS 2 MoSe 2 WS 2 and WSe 2 monolayers under strain. Phys. Rev. B 88, 195420 (2013)

    Article  ADS  Google Scholar 

  55. C. Ataca, H. Şahin, S. Ciraci, Stable, single-layer MX 2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012)

    Article  Google Scholar 

  56. T. Olsen, S. Latini, F. Rasmussen, K.S. Thygesen, Simple screened hydrogen model of excitons in two-dimensional materials. Phys. Rev. Lett. 116, 56401 (2016)

    Article  ADS  Google Scholar 

  57. J. Kang, W. Liu, D. Sarkar, D. Jena, K. Banerjee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4, 031005 (2014)

    Google Scholar 

  58. J. Shim, H.S. Kim, Y.S. Shim, D.H. Kang, H.Y. Park, J. Lee, J. Jeon, S.J. Jung, Y.J. Song, W.S. Jung, J. Lee, S. Park, J. Kim, S. Lee, Y.H. Kim, J.H. Park, Extremely large gate modulation in vertical graphene/WSe2 heterojunction barristor based on a novel transport mechanism. Adv. Mater. 28, 5293–5299 (2016)

    Article  Google Scholar 

  59. J. Lu, Z.-Q. Fan, J. Gong, J.-Z. Chen, H. ManduLa, Y.-Y. Zhang, S.-Y. Yang, X.-W. Jiang, Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects. Phys. Chem. Chem. Phys. 20, 5699–5707 (2018)

    Article  ADS  Google Scholar 

  60. Y. Wang, R.X. Yang, R. Quhe, H. Zhong, L. Cong, M. Ye, Z. Ni, Z. Song, J. Yang, J. Shi, J. Li, J. Lu, Does p-type ohmic contact exist in WSe2-metal interfaces? Nanoscale 8, 1179–1191 (2016)

    Article  ADS  Google Scholar 

  61. S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52075555 and 12074046); the National Key Research and Development Program of China (Grant No.2020YFB2008203); the Young Researchers’ Cultivation Programme (NO. 2019QJCZ021), Changsha University of Science & Technology. The authors gratefully acknowledge the supports from the Hunan Provincial Natural Science Foundation of China (Grant No. 2021JJ30733).

Funding

National Natural Science Foundation of China,52075555,Liuming Dou,12074046,Liuming Dou

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Fan or Peng **ao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript is prepared as per the ethical standard of the journal.

Consent for publication

The authors have given Consent for Publication as per the journal policy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, L., Fan, Z., **. Appl. Phys. A 128, 699 (2022). https://doi.org/10.1007/s00339-022-05862-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05862-w

Keywords

Navigation