Log in

Structural transition, mechanical properties and electronic structure of the ZnO under high pressure via first-principles investigations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The crystal structures, transition paths, elastic properties, and electronic structures are investigated comprehensively by first-principles calculations for ZnO. The sequence of the cohesion energy in ZnO phases is predicted as cesium-chloride (B2) < lead-oxide (B10) < tungsten-carbides (Bh) < nickel-arsenide (B81) < rock-salt (B1) < germanium-phosphide (GeP) < boron-nitride (Bk) < beryllium-oxide (BCT) < zinc-blende (B3) < wurtzite (B4) via density functional theory (DFT), where B4 is the most stable structure and B2 is the best high-pressure candidate, respectively. The structural transition paths are pressure-induced along the tetragonal and hexagonal in ZnO, where the intermediate phases are BCT, GeP and B10 along the tetragonal paths and B81, Bk and Bh phases along the hexagonal paths. Furthermore, the results of elastic constants indicate that the whole mechanical performance decreases with ascending pressure for the B1, B2 and B3 phases in ZnO. Nevertheless, the elastic constants C11, C12, C13 and C33 all improve for the B4, B81, GeP, Bk and Bh phases, revealing a high resistance to deformation along the <100>, <010> and <001> directions. Finally, the bandgap is corrected successfully for ZnO structures with the DFT + U approach, indicating that the structures are all wide-bandgap semiconductors, where the B3, B4, B81, BCT and B structures are direct bandgap, and the B1, B2, B10, GeP and B structures are indirect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Azam, F. Ahmed, N. Arshi, M. Chaman, A.H. Naqvi, J. Alloy. Compd. 496, 399–402 (2010)

    Article  Google Scholar 

  2. M.N. Huda, Y. Yan, S.H. Wei, M.M. Al-Jassim, Phys. Rev. B 78, 195204 (2008)

    Article  ADS  Google Scholar 

  3. M.P. Molepo, D.P. Joubert, Phys. Rev. B 84, 094110 (2011)

    Article  ADS  Google Scholar 

  4. D. Zagorac, J.C. Schön, J. Zagorac, M. Jansen, Phys. Rev. B 89, 075201 (2014)

    Article  ADS  Google Scholar 

  5. A.G. Nugraha, M.K. Saputro, B. Agusta, H.K. Yuliarto, F. Dipojono, R. Rusydi, Maezono. Appl. Surf. Sci. 410, 373–382 (2017)

    Article  ADS  Google Scholar 

  6. F. Wang, J.H. Wu, C.H. **a, C.H. Hu, C.L. Hu, P. Zhou, L.N. Shi, Y.L. Ji, Z. Zheng, X.K. Liu, J. Alloy. Compd. 597, 50–57 (2014)

    Article  Google Scholar 

  7. S. Masoumi, E. Nadimi, F. Hossein-Babaei, Phys. Chem. Chem. Phys. 20, 14688–14693 (2018)

    Article  Google Scholar 

  8. F.G. Kuang, X.Y. Kuang, S.Y. Kang, M.M. Zhong, X.W. Sun, Mat. Sci. Semicon. Proc. 31, 700–708 (2015)

    Article  Google Scholar 

  9. G. Naz, M. Shabbir, M. Ramzan, B.U. Haq, M. Arshad, M.B. Tahir, M. Hasan, R. Ahmed, Phys. B 624, 413396 (2022)

    Article  Google Scholar 

  10. B.U. Haq, Optik 238, 166782 (2021)

    Article  ADS  Google Scholar 

  11. S.X. Cui, W.X. Feng, H.Q. Hu, Z.B. Feng, Y.X. Wang, J. Alloy. Compd. 476, 306–310 (2009)

    Article  Google Scholar 

  12. J. Wróbel, J. Piechota, Solid State Commun. 146, 324–329 (2008)

    Article  ADS  Google Scholar 

  13. B.U. Haq, R. Ahmed, A. Shaari, N. Ali, Y. Al-Douri, A.H. Reshak, Mat. Sci. Semicon. Proc. 43, 123–128 (2016)

    Article  Google Scholar 

  14. B.U. Haq, S. AlFaify, T.A. Alrebdi, R. Ahmed, S. Al-Qaisi, M.F.M. Taib, G. Naz, S. Zahra, Mater. Sci. Eng: B 265, 115043 (2021)

    Article  Google Scholar 

  15. B.U. Haq, S. AlFaify, R. Ahmed, Eur. Phys. J. Plus 136, 251 (2021)

    Article  Google Scholar 

  16. B.U. Haq, S. AlFaify, R. Ahmed, Eur. Phys. J. Plus 136, 794 (2021)

    Article  Google Scholar 

  17. Y. Wang, T.J. Hou, S. Tian, S.T. Lee, Y.Y. Li, J. Phys. Chem. C 115, 7706–7716 (2011)

    Article  Google Scholar 

  18. D. Zagorac, J.C. Schön, M. Jansen, J. Phys. Chem. C 116, 16726–16739 (2012)

    Article  Google Scholar 

  19. L. Wu, T.J. Hou, Y. Wang, Y.F. Zhao, Z.Y. Guo, Y.Y. Li, S.T. Lee, J. Alloy. Compd. 541, 250–255 (2012)

    Article  Google Scholar 

  20. J. Cai, N.X. Chen, J. Phys.: Condens. Matter 19, 266207 (2007)

    ADS  Google Scholar 

  21. Z.W. Li, Y. Xu, G.Y. Gao, T. Cui, Y.M. Ma, Phys. Rev. B 79, 193201 (2009)

    Article  ADS  Google Scholar 

  22. A.J. Kulkarni, M. Zhou, K. Sarasamak, S. Limpijumnong, Phys. Rev. Lett. 97, 105502 (2006)

    Article  ADS  Google Scholar 

  23. H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. Kalvius, D. Mitchell, T. Das, P. Blaha, Phys. Rev. B 53, 11425 (1996)

    Article  ADS  Google Scholar 

  24. M. Kalay, H.H. Kart, S. Özdemir Kart, T. Çağın, J. Alloy. Compd. 484, 431–438 (2009)

    Article  Google Scholar 

  25. J.E. Jaffe, J.A. Snyder, Z. Lin, A.C. Hess, Phys. Rev. B 62, 1660 (2000)

    Article  ADS  Google Scholar 

  26. M.A. Kamboh, H. Wang, L. Wang, L. Hao, Y. Su, L. Chen, Q. Wang, Mater. Sci. Eng. B 265, 115008 (2021)

    Article  Google Scholar 

  27. C.Y. Pu, X. Tang, Q.Y. Zhang, Solid State Commun. 151, 1533–1536 (2011)

    Article  ADS  Google Scholar 

  28. L. Sponza, J. Goniakowski, C. Noguera, Phys. Rev. B 91, 075126 (2015)

    Article  ADS  Google Scholar 

  29. J. Leitner, V. Bartůněk, D. Sedmidubský, O. Jankovský, Appl. Mater. Today 10, 1–11 (2018)

    Article  Google Scholar 

  30. G.C. Zhou, L.Z. Sun, X.L. Zhong, X. Chen, L. Wei, J.B. Wang, Phys. Lett. A 368, 112–116 (2007)

    Article  ADS  Google Scholar 

  31. J. Timoshenko, A. Anspoks, A. Kalinko, A. Kuzmin, Acta Mater. 79, 194–202 (2014)

    Article  ADS  Google Scholar 

  32. K.P. Yuan, X.L. Zhang, D.W. Tang, M. Hu, Phys. Rev. B 98, 144303 (2018)

    Article  ADS  Google Scholar 

  33. J. Serrano, A.H. Romero, F.J. Manjón, R. Lauck, M. Cardona, A. Rubio, Phys. Rev. B 69, 094306 (2004)

    Article  ADS  Google Scholar 

  34. N.L. Marana, S.M. Casassa, J.R. Sambrano, Chem. Phys. 485–486, 98–107 (2017)

    Article  Google Scholar 

  35. F.G. Kuang, X.Y. Kuang, S.Y. Kang, M.M. Zhong, A.J. Mao, Mat. Sci. Semicon. Proc. 23, 63–71 (2014)

    Article  Google Scholar 

  36. V.N. Jafarova, G.S. Orudzhev, Solid State Commun. 325, 114166 (2021)

    Article  Google Scholar 

  37. K. Harun, N.A. Salleh, B. Deghfel, M.K. Yaakob, A.A. Mohamad, Res. Phys. 16, 102829 (2020)

    Google Scholar 

  38. F.S. Saoud, J.C. Plenet, M. Henini, J. Alloy. Compd. 619, 812–819 (2015)

    Article  Google Scholar 

  39. X.G. Ma, Y.H. Wu, Y. Lv, Y.F. Zhu, J. Phys. Chem. C 117, 26029–26039 (2013)

    Article  Google Scholar 

  40. V. Wang, D.M. Ma, W.L. Jia, W.L. Ji, Solid State Commun. 152, 2045–2048 (2012)

    Article  ADS  Google Scholar 

  41. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, Z. Krist.-Crys. Mater. 220, 567 (2005)

    Article  Google Scholar 

  42. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768–9774 (1992)

    Article  Google Scholar 

  43. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  44. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  45. B. Himmetoglu, A. Floris, S. de Gironcoli, M. Cococcioni, Int. J. Quantum Chem. 114, 14–49 (2014)

    Article  Google Scholar 

  46. D. Vanderbilt, Phys. Rev. B Condens Matter 41, 7892(R) (1990)

    Article  ADS  Google Scholar 

  47. B. Karki, G. Ackland, J. Crain, J. Phys.: Condens. Mat. 9, 8579–8589 (1997)

    ADS  Google Scholar 

  48. R. Hill, Proc. Phys. Soc. Sect. A 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  49. F. Birch, Phys. Rev. 71, 809 (1947)

    Article  ADS  Google Scholar 

  50. Y. Azzaz, S. Kacimi, A. Zaoui, B. Bouhafs, Phys. B 403, 3154–3158 (2008)

    Article  ADS  Google Scholar 

  51. S. Desgreniers, Phys. Rev. B 58, 14102 (1998)

    Article  ADS  Google Scholar 

  52. D. Maouche, F.S. Saoud, L. Louail, Mater. Chem. Phys. 106, 11–15 (2007)

    Article  Google Scholar 

  53. J. Wróbel, J. Piechota, Phys. Stat. Sol. (b) 244, 1538–1543 (2007)

    Article  ADS  Google Scholar 

  54. B. Amrani, I. Chiboub, S. Hiadsi, T. Benmessabih, N. Hamdadou, Solid State Commun. 137, 395–399 (2006)

    Article  ADS  Google Scholar 

  55. M. Oshikiri, F. Aryasetiawan, Phys. Rev. B 60, 10754 (1999)

    Article  ADS  Google Scholar 

  56. Q.B. Wang, C. Zhou, L. Chen, X.C. Wang, K.H. He, Opt. Commun. 312, 185–191 (2014)

    Article  ADS  Google Scholar 

  57. J. Wang, A.J. Kulkarni, K. Sarasamak, S. Limpijumnong, F.J. Ke, M. Zhou, Phys. Rev. B 76, 172103 (2007)

    Article  ADS  Google Scholar 

  58. B. Ul Haq, S. AlFaify, T. Alshahrani, R. Ahmed, S.A. Tahir, N. Amjed, A. Laref, Res. Phys. 19, (2020)

    Google Scholar 

  59. C. Lizandara Pueyo, S. Siroky, S. Landsmann, M.W.E. van den Berg, M.R. Wagner, J.S. Reparaz, A. Hoffmann, S. Polarz, Chem. Mater. 22, 4263–4270 (2010)

    Article  Google Scholar 

  60. X. Zhang, A. Schleife, Phys. Rev. B 97, 125201 (2018)

    Article  ADS  Google Scholar 

  61. S.E. Boulfelfel, S. Leoni, Phys. Rev. B 78, 125204 (2008)

    Article  ADS  Google Scholar 

  62. Q.B. Wang, C. Zhou, J. Wu, T. Lü, K.H. He, Comp. Mater. Sci. 102, 196–201 (2015)

    Article  Google Scholar 

  63. B.J. Morgan, Phys. Rev. B 80, 233102 (2009)

    Article  ADS  Google Scholar 

  64. B. Meyer, D. Marx, Phys. Rev. B 67, 039902 (2003)

    Article  ADS  Google Scholar 

  65. S. Shabbir, A. Shaari, B. Ul Haq, R. Ahmed, M. Ahmed, Optik 206, (2020)

    Article  ADS  Google Scholar 

  66. L. Fast, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 51, 17431 (1995)

    Article  ADS  Google Scholar 

  67. Z.J. Wu, E.J. Zhao, H.P. **ang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  ADS  Google Scholar 

  68. T. Azuhata, M. Takesada, T. Yagi, A. Shikanai, S.F. Chichibu, K. Torii, A. Nakamura, T. Sota, G. Cantwell, D.B. Eason, C.W. Litton, J. Appl. Phys. 94, 968 (2003)

    Article  ADS  Google Scholar 

  69. G. Carlotti, D. Fioretto, G. Socino, E. Verona, J. Phys.: Condens. Matter 7, 9147 (1995)

    ADS  Google Scholar 

  70. S. Saib, N. Bouarissa, Phys. Stat. Sol. (b) 244, 1063–1069 (2007)

    Article  ADS  Google Scholar 

  71. Y.L. Su, Q.Y. Zhang, J.J. Zhao, Solid State Commun. 233, 41–45 (2016)

    Article  ADS  Google Scholar 

  72. L.A. Valdez, M.A. Caravaca, R.A. Casali, J. Phys. Chem. Solids 134, 245–254 (2019)

    Article  ADS  Google Scholar 

  73. L.K. Bao, Z.Z. Kong, D.Y. Qu, Y.H. Duan, Mater. Today Commun. 24, 101337 (2020)

    Article  Google Scholar 

  74. H.Y. Yan, M.G. Zhang, Q. Wei, P. Guo, J. Alloy. Compd. 581, 508–514 (2013)

    Article  Google Scholar 

  75. H.W. Shou, Y.H. Duan, J. Alloy. Compd. 756, 40–49 (2018)

    Article  Google Scholar 

  76. A. Segura, J.A. Sans, F.J. Manjón, A. Muñoz, M.J. Herrera-Cabrera, Appl. Phys. Lett. 83, 278 (2003)

    Article  ADS  Google Scholar 

  77. A. Ashrafi, A. Ueta, H. Kumano, I. Suemune, J. Cryst. Growth 221, 435–439 (2000)

    Article  ADS  Google Scholar 

  78. X.J. Sha, F.B. Tian, D. Li, D.F. Duan, B.H. Chu, Y.X. Liu, B.B. Liu, T. Cui, Sci. Rep. 5, 1–8 (2015)

    Google Scholar 

  79. Y.L. Zhang, X.Z. Hao, Y.P. Huang, F.B. Tian, D. Li, Y.C. Wang, H. Song, D.F. Duan, Chin. Phys. Lett. 38, 026101 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Natural Science Foundation of Gansu Province (No. 20JR5RA427), the Talent Innovation and Entrepreneurship Project of Lanzhou (No. 2020-RC-18), the National Natural Science Foundation of China (No. 11164013), the Industrial Support and Guidance Project of Colleges and Universities of Gansu Province (No. 2021CYZC-07).

Author information

Authors and Affiliations

Authors

Contributions

**n-Wei Wang: Methodology, Investigation, Software, and Writing-Original draft. **ao-Wei Sun: Guidance, Review, Revision, Formal analysis, and Resources. Ting Song: Methodology, Discussion, and Revision. Jun-Hong Tian: Formal analysis, Data curation, and Discussion. Zi-Jiang Liu: Methodology, Software, Discussion, and Editing.

Corresponding authors

Correspondence to **ao-Wei Sun or Zi-Jiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XW., Sun, XW., Song, T. et al. Structural transition, mechanical properties and electronic structure of the ZnO under high pressure via first-principles investigations. Appl. Phys. A 128, 707 (2022). https://doi.org/10.1007/s00339-022-05845-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05845-x

Keywords

Navigation