Log in

Simultaneous reconstruction of space-dependent optical and thermophysical parameter fields based on a laser irradiation technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A secondary reconstruction technique based on multi-section reconstruction is proposed to simultaneously reconstruct the space-dependent absorption coefficient, scattering coefficient, and thermal conductivity fields without any priori information in the participating medium. In the forward model, the finite volume method (FVM) is used to solve the coupled radiative–conductive problem. The radiative and temperature signals on one side of the medium boundary induced by laser irradiation heating are served as input measurements for the inverse analysis. In the inverse model, the sequential quadratic programming (SQP) algorithm is employed to solve the optimization problems. By this technique, more measurement signals can be obtained, which is necessary for exactly reconstructing the space-dependent optical and thermophysical parameters fields. All the retrieval results show that the proposed secondary reconstruction technique based on multi-section reconstruction can be adopted to reconstruct the complex space-dependent absorption coefficient, scattering coefficient, and thermal conductivity fields accurately and efficiently. This proposed technique will play an important role in practical application, such as non-destructive testing of materials, biology imaging in clinical medicine and optimization and design of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B k :

The approximate hessian matrix

c i(x):

The restriction

c p :

Specific heat, J/(kg K)

F obj(x):

Objective function

h :

Convective heat transfer coefficient, W/(m2 K)

I :

Radiative intensity, W/(m2 sr)

L(x :

λ), The lagrangian function

L :

The geometric thickness, m

m :

The amount of equality and inequality constraints

m e :

The amount of equality restrictions

N :

The total number of the reconstruction parameters

n w :

Outward normal vector on the boundary

q laser :

Laser power density, W/m2

q r :

Radiative heat flux, W/m2

t :

Time, s

T :

Temperature, K

Ts :

Ambient temperature, K

Tw :

Boundary temperature, K

x :

The parameters to be estimated

α w :

The boundary absorptivity

γ w :

The boundary transmissivity

ε w :

The wall emissivity

κ a :

The absorption coefficient, m1

κ s :

The scattering coefficient, m1

λ :

Thermal conductivity, W/(m K)

ρ :

Density, kg/m3

σ :

Stefan–Boltzmann constant, W/(m2 K4)

Φ:

Scattering phase function

Ω :

Scattering direction

Ω :

Incident direction

cd :

Conduction heat transfer

cv :

Convective heat transfer

est :

The estimated value

exa :

The exact value

mea :

The measured value

r :

Radiative heat transfer

w:

Boundary value

w1 :

The left boundary

w2 :

The right boundary

References

  1. M.J. Varady, A.G. Fedorov, Combined radiation and conduction in glass foams. J. Heat. Trans-T. Asme. 124(6), 1103–1109 (2002)

    Article  Google Scholar 

  2. V.A. Tyshchenko, T.N. Shabalina, N.A. Sheikina, D.E. Diskina, Radiation stability of low-viscosity base oils for aerospace engineering control systems. Chem. Tech. Fuels. Oil+. 39(3), 141–144 (2003)

    Article  Google Scholar 

  3. S. Kacmaz, E. Ercelebi, S. Zengin, S. Cindoruk, The use of infrared thermal imaging in the diagnosis of deep vein thrombosis. Infrared. Phys. Technol. 86, 120–129 (2017)

    Article  ADS  Google Scholar 

  4. J. Jiao, Z.X. Guo, Thermal interaction of short-pulsed laser focused beams with skin tissues. Phys. Med. Biol. 54(13), 4225–4241 (2009)

    Article  Google Scholar 

  5. D. Balageas, S. Bourasseau, M. Dupont, E. Bocherens, V. Dewynter-Marty, P. Ferdinand, Comparison between non-destructive evaluation techniques and integrated fiber optic health monitoring systems for composite sandwich structures. J. Intel. Mat. Syst. Str. 11(6), 426–437 (2000)

    Article  Google Scholar 

  6. M. Jaunich, S. Raje, K. Kim, K. Mitra, Z.X. Guo, Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int. J. Heat. Mass. Tran. 51(23–24), 5511–5521 (2008)

    Article  MATH  Google Scholar 

  7. L.A. Dombrovsky, V. Timchenko, C. Pathak, H. Piazena, W. Muller, M. Jackson, Radiative heating of superficial human tissues with the use of water-filtered infrared-A radiation: a computational modeling. Int. J. Heat. Mass. Tran. 85, 311–320 (2015)

    Article  Google Scholar 

  8. D. Liu, Q. Li, Y.M. Xuan, Reticulated porous volumetric solar receiver designs guided by normal absorptance and hemispherical volumetric emittance investigations. Int. J. Heat. Mass. Tran. 114, 1067–1071 (2017)

    Article  Google Scholar 

  9. G.N. Liu, D. Liu, Inverse radiation analysis for simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in a nanofluid fuel sooting flame. Int. J. Heat. Mass. Tran. 118, 1080–1089 (2018)

    Article  Google Scholar 

  10. S. Zhao, X. Sun, Z. Li, W. **e, S. Meng, C. Wang, W. Zhang, Simultaneous retrieval of high temperature thermal conductivities, anisotropic radiative properties, and thermal contact resistance for ceramic foams. Appl. Therm. Eng. 146, 569–576 (2019)

    Article  ADS  Google Scholar 

  11. K.H. Lee, S.W. Baek, K.W. Kim, Inverse radiation analysis using repulsive particle swarm optimization algorithm. Int. J. Heat. Mass. Tran. 51(11–12), 2772–2783 (2008)

    Article  MATH  Google Scholar 

  12. Y.T. Ren, H. Qi, X. Huang, W. Wang, L.M. Ruan, H.P. Tan, Application of improved krill herd algorithms to inverse radiation problems. Int. J. Therm. Sci. 103, 24–34 (2016)

    Article  Google Scholar 

  13. K.W. Kim, S.W. Baek, Inverse rcadiation-conduction design problem in a participating concentric cylindrical medium. Int. J. Heat. Mass. Tran. 50(13–14), 2828–2837 (2007)

    Article  MATH  Google Scholar 

  14. R. Das, S.C. Mishra, R. Uppaluri, Multiparameter estimation in a transient conduction-radiation problem using the lattice Boltzmann method and the finite-volume method coupled with the genetic algorithms. Numer. Heat. Tr a-Appl. 53(12), 1321–1338 (2008)

    Article  ADS  Google Scholar 

  15. R. Das, S.C. Mishra, M. Ajith, R. Uppaluri, An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. J. Quant. Spectrosc. Ra. 109(11), 2060–2077 (2008)

    Article  ADS  Google Scholar 

  16. Y.T. Ren, H. Qi, F.Z. Zhao, L.M. Ruan, H.P. Tan, Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media. Sci. Rep. 6, 21998 (2016)

    Article  ADS  Google Scholar 

  17. K.W. Kim, S.W. Baek, M.Y. Kim, H.S. Ryou, Estimation of emissivities in a two-dimensional irregular geometry by inverse radiation analysis using hybrid genetic algorithm. J. Quant. Spectrosc. Ra. 87(1), 1–14 (2004)

    Article  ADS  Google Scholar 

  18. R. Das, S.C. Mishra, R. Uppaluri, Inverse analysis applied to retrieval of parameters and reconstruction of temperature field in a transient conduction–radiation heat transfer problem involving mixed boundary conditions. Int. Commun. Heat. Mass. Transfer. 37(1), 52–57 (2010)

    Article  Google Scholar 

  19. R. Das, S.C. Mishra, T.B.P. Kumar, R. Uppaluri, An inverse analysis for parameter estimation applied to a non-fourier conduction-radiation problem. Heat. Transfer. Eng. 32(6), 455–466 (2011)

    Article  ADS  Google Scholar 

  20. R.P. Chopade, V. Mohan, R. Mayank, R.V.S. Uppaluri, S.C. Mishra, Simultaneous retrieval of parameters in a transient conduction-radiation problem using a differential evolution algorithm. Nume. Heat. Tr a-Appl. 63(5), 373–395 (2013)

    Article  ADS  Google Scholar 

  21. H. Qi, L.M. Ruan, H.C. Zhang, Y.M. Wang, H.P. Tan, Inverse radiation analysis of a one-dimensional participating slab by stochastic particle swarm optimizer algorithm. In.t J. Therm. Sci. 46(7), 649–661 (2007)

    Article  Google Scholar 

  22. N. Tian, J. Sun, W.B. Xu, C.H. Lai, Estimation of unknown heat source function in inverse heat conduction problems using quantum-behaved particle swarm optimization. Int. J. Heat. Mass Tran. 54(17–18), 4110–4116 (2011)

    Article  MATH  Google Scholar 

  23. D. Liu, Simultaneous reconstruction of temperature field and radiative properties by inverse radiation analysis using stochastic particle swarm optimization. Therm. Sci. 20(2), 493–504 (2016)

    Article  Google Scholar 

  24. W.Z. Wang, Y.M. Wang, W.J. Song, X.Q. Li, Multiband infrared inversion for low-concentration methane monitoring in a confined dust-polluted atmosphere. Appl. Optics. 56(9), 2548–2555 (2017)

    Article  ADS  Google Scholar 

  25. Y.M. Wang, W.Z. Wang, Z.L. Shao, D.M. Wang, G.Q. Shi, Innovative prediction model of carbon monoxide emission from deep mined coal oxidation. Bulg. Chem. Commun. 46(4), 887–895 (2014)

    Google Scholar 

  26. B. Zhang, H. Qi, Y.T. Ren, S.C. Sun, L.M. Ruan, Inverse transient radiation analysis in one-dimensional participating slab using improved ant colony optimization algorithms. J. Quant. Spectrosc. Ra. 133, 351–363 (2014)

    Article  ADS  Google Scholar 

  27. B. Zhang, H. Qi, S.-C. Sun, L.-M. Ruan, H.-P. Tan, A novel hybrid ant colony optimization and particle swarm optimization algorithm for inverse problems of coupled radiative and conductive heat transfer. Therm. Sci. 20(2), 461–472 (2016)

    Article  Google Scholar 

  28. X.H. Shi, Y.C. Liang, H.P. Lee, C. Lu, L.M. Wang, An improved GA and a novel PSO-GA-based hybrid algorithm. Inform. Process. Lett. 93(5), 255–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. R.L. Galski, F.L. de Sousa, F.M. Ramos, A.J.S. Neto, Application of a GEO plus SA hybrid optimization algorithm to the solution of an inverse radiative transfer problem. Inverse. Probl. Sci. En. 17(3), 321–334 (2009)

    Article  MATH  Google Scholar 

  30. R. Dasf, R.K. Singla Asme. Inverse heat transfer study of a nonlinear straight porous fin using hybrid optimization, In: Proceedings of the asme gas turbine India conference, 2014, New Delhi, INDIA, (2014), pp 1–10

  31. H. Qi, C.-Y. Niu, S. Gong, Y.-T. Ren, L.-M. Ruan, Application of the hybrid particle swarm optimization algorithms for simultaneous estimation of multi-parameters in a transient conduction-radiation problem. Int. J. Heat. Mass. Tran. 83, 428–440 (2015)

    Article  Google Scholar 

  32. L.-Y. Wei, H. Qi, A.I. Sadaf, S. Wen, L.-M. Ruan, Simultaneous measurement of space-dependent refractive index and absorption coefficient based on a laser irradiation technique. Meas. Sci. Technol. 29(10), 104006 (2018)

    Article  ADS  Google Scholar 

  33. L.-Y. Wei, H. Qi, Z.-T. Niu, S. Wen, Y.-T. Ren, Inverse heat transfer analysis to determine the temperature or phase change-dependent refractive index of semitransparent materials. Inverse. Probl. Sci. En. 29, 1–23 (2020)

    MathSciNet  MATH  Google Scholar 

  34. N.J. Ruperti, M. Raynaud, J.F. Sacadura, A method for the solution of the coupled inverse heat conduction-radiation problem. J. Heat. Trans-T. Asme. 118(1), 10–17 (1996)

    Article  Google Scholar 

  35. M. Schweiger, S.R. Arridge, Optical tomographic reconstruction in a complex head model using a priori region boundary information. Phys. Med. Biol. 44(11), 2703–2721 (1999)

    Article  Google Scholar 

  36. H.Y. Li, Estimation of thermal properties in combined conduction and radiation. Int. J. Heat. Mass. Tran. 42(3), 565–572 (1999)

    Article  MATH  Google Scholar 

  37. S.M.H. Sarvari, Inverse determination of heat source distribution in conductive-radiative media with irregular geometry. J. Quant. Spectrosc. Ra. 93(1–3), 383–395 (2005)

    Article  ADS  Google Scholar 

  38. N. Daouas, A. Fguiri, M.S. Radhouani, Solution of a coupled inverse heat conduction-radiation problem for the study of radiation effects on the transient hot wire measurements. Exp. Therm. Fluid. Sci. 32(8), 1766–1778 (2008)

    Article  Google Scholar 

  39. M. Cui, K. Yang, X.L. Xu, S.D. Wang, X.W. Gao, A modified Levenberg-Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems. Int. J. Heat. Mass. Tran. 97, 908–916 (2016)

    Article  Google Scholar 

  40. K. Ren, G. Bal, A.H. Hielscher, Frequency domain optical tomography based on the equation of radiative transfer. Siam. J. Sci Comput. 28(4), 1463–1489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. J.L. Hu, Z.P. Wu, H. McCann, L.E. Davis, C.G. **e, Sequential quadratic programming method for solution of electromagnetic inverse problems. Ieee. T. Antenn. Propag. 53(8), 2680–2687 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. H.K. Kim, A.H. Hielscher, A PDE-constrained SQP algorithm for optical tomography based on the frequency-domain equation of radiative transfer. Inverse. Probl. 25(1), 015010 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. H. Qi, Y.-B. Qiao, Y.-T. Ren, J.-W. Shi, Z.-Y. Zhang, L.-M. Ruan, Application of the sequential quadratic programming algorithm for reconstructing the distribution of optical parameters based on the time-domain radiative transfer equation. Optics. Express. 24(21), 24297 (2016)

    Article  ADS  Google Scholar 

  44. H. Qi, F.-Z. Zhao, Y.-T. Ren, Y.-B. Qiao, L.-Y. Wei, M.A. Islam, L.-M. Ruan, Experimental research on noninvasive reconstruction of optical parameter fields based on transient radiative transfer equation for diagnosis applications. J. Quant. Spectrosc. Radiat. Transfer. 222–223, 1–11 (2019)

    Article  ADS  Google Scholar 

  45. L.-Y. Wei, H. Qi, X.-L. Zhang, S. Wen, M.A. Islam, L.-M. Ruan, Reconstruction of radiative properties fields in participating media by using the sequential quadratic programing combined with regularization technique. J. Heat. Transfer. 141(2), 022702 (2019)

    Article  Google Scholar 

  46. H. Ghasemi, P. Kerfriden, S.P.A. Bordas, J. Muthu, G. Zi, T. Rabczuk, Probabilistic multiconstraints optimization of cooling channels in ceramic matrix composites. Compos. Part B-Eng. 81, 107–119 (2015)

    Article  Google Scholar 

  47. H. Ghasemi, H.S. Park, N. Alajlan, T. Rabczuk, A computational framework for design and optimization of flexoelectric materials. Int. J. Comp. Meth-Sing. 15(3), 18850097 (2018)

    MATH  Google Scholar 

  48. K.M. Hamdia, H. Ghasemi, X.Y. Zhuang, T. Rabczuk, Multilevel Monte Carlo method for topology optimization of flexoelectric composites with uncertain material properties. Eng. Anal. Bound. Elem. 134, 412–418 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  49. MF Modest. Radiative heat transfer. 3rd Edition edn. (Academic Press, New York, 2013)

  50. H.P. Tan, L.M. Ruan, T.W. Tong, Temperature response in absorbing, isotropic scattering medium caused by laser pulse. Int. J. Heat. Mass. Tran. 43(2), 311–320 (2000)

    Article  MATH  Google Scholar 

  51. R.B. Wilson, A simplicial algorithm for concave programming (Harward University, Boston, 1963)

    Google Scholar 

  52. M.J.D. Powell, The convergence of variable metric methods for non-linearly constrained optimization calculations, nonlinear. Program 3, 27–63 (1978)

    Google Scholar 

  53. J.C. Ye, K.J. Webb, C.A. Bouman, R.P. Millane, Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework. J. Opt. Soc. Am. A. 16(10), 2400–2412 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the project of National Natural Science Foundation of China (grant numbers 51776053). A special thanks goes out to the editors and referees who contributed valuable feedback that helped improve this work. In addition, our sincere gratitude goes to Dr. David Ezekoye from Harbin Institute of Technology for proofreading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **n-Lin **a.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that may represent a conflict of interest in connection with the work submitted to the journal: Applied Physics A-Materials Science and Processing. Authors: Pei Zhang, Chuang Sun, **n-Lin **a*, Fei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Sun, C., **a, XL. et al. Simultaneous reconstruction of space-dependent optical and thermophysical parameter fields based on a laser irradiation technique. Appl. Phys. A 128, 514 (2022). https://doi.org/10.1007/s00339-022-05616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05616-8

Keywords

Navigation