Log in

Stability of mixed carbon–silicon clathrates

  • T.C. : Materials by Design Under Pressure: experiments and theory
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We examine the thermodynamic and dynamic stability (i.e., phonon dispersion) of mixed silicon–carbon clathrate frameworks using first-principles calculations as a function of pressure and composition. Silicon atoms were substituted on special framework Wyckoff positions in the Type-I and Type-II empty carbon clathrate structures over a broad compositional range, and the enthalpies of the mixed clathrates were compared to pure silicon and carbon clathrates, as well as the thermodynamic ground states. While all mixed clathrates examined were found to be metastable with respect to elemental formation components and/or silicon carbide, certain empty binary host lattices are found to be lower-energy phases than the pure-component clathrate endmembers at high pressure, in particular Type-I C22Si24 and Type-II C32Si104. This enhanced energetic stability is rationalized by a decrease of energy upon do** specific crystallographic positions. When occupied by small guest ions like Li+ and Na+, these mixed C–Si clathrate structures exhibit minima in their formation enthalpies under high-pressure conditions, providing insights into potential synthetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.H. Friedman, The four worlds of carbon. Nat. Chem. 4, 426–426 (2012). https://doi.org/10.1038/nchem.1340

    Article  Google Scholar 

  2. X. Blase, P. Gillet, A.S. Miguel, P. Mélinon, Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505 (2003). https://doi.org/10.1103/physrevlett.92.215505

    Article  ADS  Google Scholar 

  3. S. Lu, H. Liu, I.I. Naumov, S. Meng, Y. Li, J.S. Tse, B. Yang, R.J. Hemley, Superconductivity in dense carbon-based materials. Phys. Rev. B. 93, 104509 (2016). https://doi.org/10.1103/physrevb.93.104509

    Article  ADS  Google Scholar 

  4. F. Zipoli, M. Bernasconi, G. Benedek, Electron-phonon coupling in halogen-doped carbon clathrates from first principles. Phys. Rev. B. 74, 205408 (2006). https://doi.org/10.1103/physrevb.74.205408

    Article  ADS  Google Scholar 

  5. I. Spagnolatti, M. Bernasconi, G. Benedek, Electron-phonon interaction in carbon clathrate hex-C40. Eur. Phys. J. B. Condens. Matter Complex Syst. 34, 63–67 (2003). https://doi.org/10.1140/epjb/e2003-00197-0

    Article  Google Scholar 

  6. R. Nesper, K. Vogel, P.E. Blöchl, Hypothetical carbon modifications derived from zeolite frameworks. Angewandte. Chemie. Int. Ed. Engl. 32, 701–703 (1993). https://doi.org/10.1002/anie.199307011

    Article  Google Scholar 

  7. G.S. Nolas, J.L. Cohn, G.A. Slack, S.B. Schujman, Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178–180 (1998). https://doi.org/10.1063/1.121747

    Article  ADS  Google Scholar 

  8. M. Beekman, G.S. Nolas, Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J. Mater. Chem. 18, 842–851 (2007). https://doi.org/10.1039/b706808e

    Article  Google Scholar 

  9. J.S. Kasper, P. Hagenmuller, M. Pouchard, C. Cros, Clathrate structure of silicon Na8Si46 and NaxSi136 (x < 11). Science 150, 1713–1714 (1965). https://doi.org/10.1126/science.150.3704.1713

    Article  ADS  Google Scholar 

  10. D.Y. Kim, S. Stefanoski, O.O. Kurakevych, T.A. Strobel, Synthesis of an open-framework allotrope of silicon. Nat. Mater. 14, 169–173 (2015). https://doi.org/10.1038/nmat4140

    Article  ADS  Google Scholar 

  11. M. Guerette, M.D. Ward, L. Zhu, T.A. Strobel, Single-crystal synthesis and properties of the open-framework allotrope Si24. J. Phys. Condens. Matter. 32, 194001 (2020). https://doi.org/10.1088/1361-648x/ab699d

    Article  ADS  Google Scholar 

  12. A. San-Miguel, P. Kéghélian, X. Blase, P. Mélinon, A. Perez, J.P. Itié, A. Polian, E. Reny, C. Cros, M. Pouchard, High pressure behavior of silicon clathrates: a new class of low compressibility materials. Phys. Rev. Lett. 83, 5290–5293 (1999). https://doi.org/10.1103/physrevlett.83.5290

    Article  ADS  Google Scholar 

  13. A.J. Karttunen, T.F. Fässler, M. Linnolahti, T.A. Pakkanen, Structural principles of semiconducting Group 14 Clathrate Frameworks. Inorg. Chem. 50, 1733–1742 (2011). https://doi.org/10.1021/ic102178d

    Article  Google Scholar 

  14. J.-A. Dolyniuk, B. Owens-Baird, J. Wang, J.V. Zaikina, K. Kovnir, Clathrate thermoelectrics. Mater. Sci. Eng. R. Rep. 108, 1–46 (2016). https://doi.org/10.1016/j.mser.2016.08.001

    Article  Google Scholar 

  15. A.M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, A guest-free germanium clathrate. Nature 443, 320–323 (2006). https://doi.org/10.1038/nature05145

    Article  ADS  Google Scholar 

  16. M. Bernasconi, S. Gaito, G. Benedek, Clathrates as effective p-type and n-type tetrahedral carbon semiconductors. Phys. Rev. B. 61, 12689–12692 (2000). https://doi.org/10.1103/physrevb.61.12689

    Article  ADS  Google Scholar 

  17. C.J. Pickard, R.J. Needs, Hypothetical low-energy chiral framework structure of group 14 elements. Phys. Rev. B. 81, 014106 (2010). https://doi.org/10.1103/physrevb.81.014106

    Article  ADS  Google Scholar 

  18. N. Rey, A. Muñoz, P. Rodríguez-Hernández, A.S. Miguel, First-principles study of lithium-doped carbon clathrates under pressure. J. Phys. Condens. Matter. 20, 215218 (2008). https://doi.org/10.1088/0953-8984/20/21/215218

    Article  ADS  Google Scholar 

  19. T. Zeng, R. Hoffmann, R. Nesper, N.W. Ashcroft, T.A. Strobel, D.M. Proserpio, Li-filled, B-substituted carbon clathrates. J. Am. Chem. Soc. 137, 12639–12652 (2015). https://doi.org/10.1021/jacs.5b07883

    Article  Google Scholar 

  20. L. Zhu, G.M. Borstad, H. Liu, P.A. Guńka, M. Guerette, J.-A. Dolyniuk, Y. Meng, E. Greenberg, V.B. Prakapenka, B.L. Chaloux, A. Epshteyn, R.E. Cohen, T.A. Strobel, Carbon-boron clathrates as a new class of sp3-bonded framework materials. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aay8361

    Article  Google Scholar 

  21. T.A. Strobel, L. Zhu, P.A. Guńka, G.M. Borstad, M. Guerette, A lanthanum-filled carbon–boron clathrate. Angewandte. Chemie. Int. Ed. 60, 2877–2881 (2021). https://doi.org/10.1002/anie.202012821

    Article  Google Scholar 

  22. L. Zhu, T.A. Strobel, R.E. Cohen, Prediction of an extended ferroelectric clathrate. Phys. Rev. Lett. 125, 127601 (2020). https://doi.org/10.1103/physrevlett.125.127601

    Article  ADS  Google Scholar 

  23. Y. Wang, J. Lv, L. Zhu, Y. Ma, Crystal structure prediction via particle-swarm optimization. Phys. Rev. B. 82, 094116 (2010). https://doi.org/10.1103/physrevb.82.094116

    Article  ADS  Google Scholar 

  24. Y. Wang, J. Lv, L. Zhu, Y. Ma, CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012). https://doi.org/10.1016/j.cpc.2012.05.008

    Article  ADS  Google Scholar 

  25. B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, Y. Ma, Interface structure prediction via CALYPSO method. Sci Bull. 64, 301–309 (2019). https://doi.org/10.1016/j.scib.2019.02.009

    Article  Google Scholar 

  26. K.S. Chan, M.A. Miller, W. Liang, C. Ellis-Terrell, X. Peng, First-principles computational design and synthesis of hybrid carbon–silicon clathrates. J Mater Sci. 49, 2723–2733 (2014). https://doi.org/10.1007/s10853-013-7973-6

    Article  ADS  Google Scholar 

  27. K.S. Chan, Hybrid carbon-based clathrates for energy storage. C. 4, 7 (2018). https://doi.org/10.3390/c4010007

    Article  Google Scholar 

  28. K.S. Chan, M.A. Miller, W. Liang, C. Ellis-Terrell, Computational design and synthesis of nitrogen-substituted carbon and silicon clathrates. Mater. Res. Lett. 2, 70–75 (2013). https://doi.org/10.1080/21663831.2013.866988

    Article  Google Scholar 

  29. K.S. Chan, X. Peng, First-principles study of electronic structure of type I hybrid carbon–silicon clathrates. J. Electron. Mater. 45, 4246–4255 (2016). https://doi.org/10.1007/s11664-016-4621-3

    Article  ADS  Google Scholar 

  30. G. Gao, N.W. Ashcroft, R. Hoffmann, The unusual and the expected in the Si/C phase diagram. J. Am. Chem. Soc. 135, 11651–11656 (2013). https://doi.org/10.1021/ja405359a

    Article  Google Scholar 

  31. T.B. Shiell, L. Zhu, B.A. Cook, J.E. Bradby, D.G. McCulloch, T.A. Strobel, Bulk crystalline 4H-silicon through a metastable allotropic transition. Phys. Rev. Lett. 126, 215701 (2021). https://doi.org/10.1103/physrevlett.126.215701

    Article  ADS  Google Scholar 

  32. A. Wosylus, I. Veremchuk, W. Schnelle, M. Baitinger, U. Schwarz, Y. Grin, Cs8−xSi46: a type-I clathrate with expanded silicon framework. Chem. Eur. J. 15, 5901–5903 (2009). https://doi.org/10.1002/chem.200900307

    Article  Google Scholar 

  33. J.-M. Hübner, W. Jung, M. Schmidt, M. Bobnar, P. Koželj, B. Böhme, M. Baitinger, M. Etter, Y. Grin, U. Schwarz, Cage adaption by high-pressure synthesis: the clathrate-I borosilicide Rb8B8Si38. Inorg. Chem. 60, 2160–2167 (2021). https://doi.org/10.1021/acs.inorgchem.0c02357

    Article  Google Scholar 

  34. S. Yamanaka, E. Enishi, H. Fukuoka, M. Yasukawa, High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46. Inorg. Chem. 39, 56–58 (2000). https://doi.org/10.1021/ic990778p

    Article  Google Scholar 

  35. H.-T. Huang, L. Zhu, M.D. Ward, B.L. Chaloux, R. Hrubiak, A. Epshteyn, J.V. Badding, T.A. Strobel, Surprising stability of cubane under extreme pressure. J. Phys. Chem. Lett. 9, 2031–2037 (2018). https://doi.org/10.1021/acs.jpclett.8b00395

    Article  Google Scholar 

  36. Q. Wang, H. Gou, L. Zhu, H.-T. Huang, A. Biswas, B.L. Chaloux, A. Epshteyn, J.P. Yesinowski, Z. Liu, G. Cody, M. Ma, Z. Zhao, Y. Fei, C. Prescher, E. Greenberg, V.B. Prakapenka, T.A. Strobel, Modifying carbon nitride through extreme phosphorus substitution. ACS Mater. Lett. 1, 14–19 (2019). https://doi.org/10.1021/acsmaterialslett.9b00010

    Article  Google Scholar 

  37. A. Biswas, M.D. Ward, T. Wang, L. Zhu, H.-T. Huang, J.V. Badding, V.H. Crespi, T.A. Strobel, Evidence for orientational order in nanothreads derived from thiophene. J. Phys. Chem. Lett. 10, 7164–7171 (2019). https://doi.org/10.1021/acs.jpclett.9b02546

    Article  Google Scholar 

  38. H. Gou, L. Zhu, H.-T. Huang, A. Biswas, D.W. Keefer, B.L. Chaloux, C. Prescher, L. Yang, D.Y. Kim, M.D. Ward, J. Lerach, S. Wang, A.R. Oganov, A. Epshteyn, J.V. Badding, T.A. Strobel, From linear molecular chains to extended polycyclic networks: polymerization of dicyanoacetylene. Chem. Mater. 29, 6706–6718 (2017). https://doi.org/10.1021/acs.chemmater.7b01446

    Article  Google Scholar 

  39. W. Jung, J. Lörincz, R. Ramlau, H. Borrmann, Y. Prots, F. Haarmann, W. Schnelle, U. Burkhardt, M. Baitinger, Y. Grin, K7B7Si39, a borosilicide with the clathrate I structure. Angewandte. Chemie. Int. Ed. 46, 6725–6728 (2007). https://doi.org/10.1002/anie.200701028

    Article  Google Scholar 

  40. J. Hübner, W. Jung, P. Koželj, M. Bobnar, R. Cardoso-Gil, U. Burkhardt, B. Böhme, M. Baitinger, U. Schwarz, Y. Grin, Mastering extreme size constraints in the clathrate-I borosilicide Cs8B8Si38. Z. Anorg. Allg. Chem. 647, 119–125 (2021). https://doi.org/10.1002/zaac.202000400

    Article  Google Scholar 

  41. W. Jung, B. Böhme, J.M. Hübner, U. Burkhardt, H. Borrmann, M. Bobnar, H.D. Nguyen, I. Pantenburg, M. Etter, U. Schwarz, Y. Grin, M. Baitinger, The impact of boron atoms on clathrate-I silicides: composition range of the borosilicide K8–xBySi46−y. Dalton. T. 50, 1274–1282 (2021). https://doi.org/10.1039/d0dt03339a

    Article  Google Scholar 

  42. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  ADS  Google Scholar 

  43. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45, 13244–13249 (1992). https://doi.org/10.1103/physrevb.45.13244

    Article  ADS  Google Scholar 

  44. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  45. A. Bhattacharya, C. Carbogno, B. Böhme, M. Baitinger, Y. Grin, M. Scheffler, Formation of vacancies in Si- and Ge-based clathrates: role of electron localization and symmetry breaking. Phys. Rev. Lett. 118, 236401 (2017). https://doi.org/10.1103/physrevlett.118.236401

    Article  ADS  Google Scholar 

  46. K.F. Garrity, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014). https://doi.org/10.1016/j.commatsci.2013.08.053

    Article  Google Scholar 

  47. S. Baroni, P. Giannozzi, A. Testa, Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861–1864 (1987). https://doi.org/10.1103/physrevlett.58.1861

    Article  ADS  Google Scholar 

  48. P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni, Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B. 43, 7231–7242 (1990). https://doi.org/10.1103/physrevb.43.7231

    Article  ADS  Google Scholar 

  49. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985). https://doi.org/10.1038/318162a0

    Article  ADS  Google Scholar 

  50. Data retrieved from the Materials Project 2020.09.08 for C (mp-630227), (n.d.). https://doi.org/10.17188/1278976.

  51. C.A. Perottoni, J.A.H. da Jornada, The carbon analogues of type-I silicon clathrates. J. Phys. Condens. Matter. 13, 5981 (2001). https://doi.org/10.1088/0953-8984/13/26/313

    Article  ADS  Google Scholar 

  52. C.L. Condron, J. Martin, G.S. Nolas, P.M.B. Piccoli, A.J. Schultz, S.M. Kauzlarich, Structure and thermoelectric characterization of Ba8Al14Si31. Inorg. Chem. 45, 9381–9386 (2006). https://doi.org/10.1021/ic061241w

    Article  Google Scholar 

  53. V. Baran, A. Senyshyn, A.J. Karttunen, A. Fischer, W. Scherer, G. Raudaschl-Sieber, T.F. Fässler, A combined metal–halide/metal flux synthetic route towards type-I clathrates: crystal structures and thermoelectric properties of A8Al8Si38 (A = K, Rb, and Cs). Chem. Eur. J. 20, 15077–15088 (2014). https://doi.org/10.1002/chem.201403416

    Article  Google Scholar 

  54. Y. Dong, P. Chai, M. Beekman, X. Zeng, T.M. Tritt, G.S. Nolas, Precursor routes to complex ternary intermetallics: single-crystal and microcrystalline preparation of clathrate-I Na8Al8Si38 from NaSi + NaAlSi. Inorg. Chem. 54, 5316–5321 (2015). https://doi.org/10.1021/acs.inorgchem.5b00348

    Article  Google Scholar 

  55. N.P. Blake, D. Bryan, S. Latturner, L. Møllnitz, G.D. Stucky, H. Metiu, Structure and stability of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J Chem Phys. 114, 10063–10074 (2001). https://doi.org/10.1063/1.1370949

    Article  ADS  Google Scholar 

  56. L. Yang, Y. Wang, T. Liu, T.D. Hu, B.X. Li, K. Ståhl, S.Y. Chen, M.Y. Li, P. Shen, G.L. Lu, Y.W. Wang, J.Z. Jiang, Copper position in type-I Ba8Cu4Si42 clathrate. J. Solid State Chem. 178, 1773–1777 (2005). https://doi.org/10.1016/j.jssc.2005.03.015

    Article  ADS  Google Scholar 

  57. G. Cordier, P. Woll, Neue ternäre intermetallische Verbindungen mit Clathratstruktur: Ba8(T, Si)6Si40 und Ba6(T, Ge)6Ge40 mit T ≡ Ni Pd, Pt, Cu, Ag, Au. J Less Common Metals. 169, 291–302 (1991). https://doi.org/10.1016/0022-5088(91)90076-g

    Article  Google Scholar 

  58. U. Aydemir, C. Candolfi, A. Ormeci, H. Borrmann, U. Burkhardt, Y. Oztan, N. Oeschler, M. Baitinger, F. Steglich, Yu. Grin, Synthesis, crystal structure, and physical properties of the type-I clathrate Ba8−δNixySi46–x–y. Inorg. Chem. 51, 4730–4741 (2012). https://doi.org/10.1021/ic2027626

    Article  Google Scholar 

  59. R. Kröner, K. Peters, H.G. von Schnering, R. Nesper, Crystal structure of the clathratesK8Ga8Si38 and K8Ga8Sn38. Zeitschrift Für Kristallographie New Cryst. Struct. 213, 707–708 (1998). https://doi.org/10.1524/ncrs.1998.213.14.707

    Article  Google Scholar 

  60. M. Shur, S. Rumyantsev, M. Levinshtein, SiC Materials and Devices, World Scientific, 2006. https://doi.org/10.1142/6134

  61. G.J. Miller, M.W. Schmidt, F. Wang, T.-S. You, Zintl Phases, principles and recent developments. Struct. Bond. 139, 1–55 (2011). https://doi.org/10.1007/430_2010_24

    Article  Google Scholar 

  62. O.O. Kurakevych, T.A. Strobel, D.Y. Kim, T. Muramatsu, V.V. Struzhkin, Na-Si clathrates are high-pressure phases: a melt-based route to control stoichiometry and properties. Cryst Growth Des. 13, 303–307 (2013). https://doi.org/10.1021/cg3017084

    Article  Google Scholar 

  63. Y. Liang, B. Böhme, A. Ormeci, H. Borrmann, O. Pecher, F. Haarmann, W. Schnelle, M. Baitinger, Y. Grin, A clathrate-I phase with Li–Ge framework. Chem. Eur. J. 18, 9818–9822 (2012). https://doi.org/10.1002/chem.201202069

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC0020683. Computations were carried out at the Memex cluster of Carnegie Institution for Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Strobel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Lin, Y., Cohen, R.E. et al. Stability of mixed carbon–silicon clathrates. Appl. Phys. A 128, 448 (2022). https://doi.org/10.1007/s00339-022-05571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05571-4

Navigation