Log in

Effect of Pr substitution in the A site on the structural, dielectric and magnetic properties of double perovskite La2NiMnO6

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Double perovskite compounds have the general formula A2B'B''O6; these materials have attracted a lot of interest due to their diverse structural, electrical, dielectric and magnetic properties. In this work, we have studied the effects of substitution of lanthanum by Pr at the A site on the electrical and magnetic properties of the compounds La2-xPrxNiMnO6 [x = 0, 0.1, 0.2]. The La2NiMn \({\mathrm{O}}_{6}\) compound belongs to the manganite family, which is defined as an important material for technological applications in various fields. Do** with praseodymium (Pr) in the A site changes the electrical, dielectric and magnetic properties of the compound. The samples were successfully synthesized by the sol–gel method. Structural investigation by RX diffraction shows that all compounds crystallize in the monoclinic system with space group P21/n at room temperature. Dielectric studies for all samples were measured by complex impedance spectroscopy in the temperature range 100–200 K and in the frequency range 100 Hz–1 MHz. Moreover, the substitution of lanthanum with praseodymium leads to a decrease in the dielectric constant and the modulus analysis shows the presence of the relaxation phenomenon in these materials. The electrical conductivity obeys the Arrhenius law for all samples. The activation energies obtained from the conductivity and modulus are different. The compound exhibits a magnetic transition and the Curie temperature (Tc) decreases with increasing Pr content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, Science 309(5733), 391–392 (2005)

    Article  Google Scholar 

  2. R. Schmidt, D.C. Sinclair, K. Muller, ceramics for capacitor applications (2013), p. 19.

  3. S. **, T.H. Tiefel, M. McCormack, R. Ramesh, L.H. Chen, Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  4. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  5. M.B. Salomon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001)

    Article  ADS  Google Scholar 

  6. E.L. Nagaev, Phys. Rep. 346, 387 (2001)

    Article  ADS  Google Scholar 

  7. K.I. Nassar, N. Rammeh, S.S. Teixeira, M.P.F. Graça, J. Electron. Mater. 51, 370–377 (2022)

    Article  ADS  Google Scholar 

  8. M. Mohamed, K.I. Nassar, M. Mohamed, N. Rammeh, M.P.F. Graça, J. Mol. Struct. 1258, 132658 (2022)

    Article  Google Scholar 

  9. K.I. Nassar, M. Slimi, N. Rammeh, S.S. Teixeira, M.P.F. Graça, Appl. Phys. A 127, 940 (2021)

    Article  ADS  Google Scholar 

  10. K.I. Nassar, M. Slimi, N. Rammeh, A. Bouhamed, A. Njeh, O. Kanoun, J. Mater. Sci Mater Electron 32, 24050–24057 (2021)

    Article  Google Scholar 

  11. N.S. Rogado et al., Adv. Mater. 17(18), 2225–2227 (2005)

    Article  Google Scholar 

  12. R. Dass, J.-Q. Yan, J. Goodenough, Phys. Rev. B, 68 (6) (2003), Article 064415.

  13. S.R. Spurgeon et al., Chem. Mater. 28(11), 3814–3822 (2016)

    Article  Google Scholar 

  14. D. Rubi et al., Mater. Sci. Eng. B 126(2–3), 139–142 (2006)

    Article  Google Scholar 

  15. H. Yang et al., J. Appl. Phys. 93(10), 6987–6989 (2003)

    Article  ADS  Google Scholar 

  16. D. Singh, C.H. Park, Phys. Rev. Lett., 100 (8) (2008), Article 087601.

  17. M. Niketa Bajpai, Saleem and Ashutosh Mishra. J. Mater. Sci. Mater. Electron. 32, 12890–12902 (2021)

    Google Scholar 

  18. Y. Bai, Y. **a, H. Li, L. Han, Z. Wang, X. Wu, S. Lv, X. Liu, J. Meng, J. Phys. Chem. C 116, 16841–16847 (2012)

    Article  Google Scholar 

  19. C. Thirmal, C. Nayek, P. Murugavela, V. Subramanian, AIP Adv. 3, 112109 (2013)

    Article  ADS  Google Scholar 

  20. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  21. Rodriguez-Carbajal J. Program FullProf. Laboratoire Léon Brillouin (CEACNRS), version 3.5d, LLB-JRS (1998).

  22. MPF Graça, MGF da Silva, ASB Sombra, MA Valente. J Non-Cryst Solids 353(4751), 4390–4394

  23. MGF da Silva, ASB Sombra, MA Valente, J. Non-Cryst Solids 352 (42–49), 5199–5204.

  24. MPF Graça, PR Prezas, MM Costa, MA Valente, J. Sol–Gel Sci Technol. 64 (1), 78–85.

  25. K. Devi Chandrasekhar, A.K. Das, C. Mitra, A. Venimadhav, J. Phys. Condens. Matter 24, 9 (2012). (495901)

    Article  Google Scholar 

  26. R.D. Shannon, Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 32 (5) (1976), pp. 751–767.

  27. Y. Guo et al., J. Supercond. Nov. Magn. 26(11), 3287–3292 (2013)

    Article  Google Scholar 

  28. R.D. Shannon, Acta Crystallogr. Sect. A Found. Crystallogr. 32, 751 (1976)

    ADS  Google Scholar 

  29. M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972)

    Article  ADS  Google Scholar 

  30. K.S. Cole, P.M. Krishna, D.M. Prasad, J.H. Lee, J.S. Kim, J. Alloy. Compd. 464, 497 (2008)

    Article  Google Scholar 

  31. H. Kolodziej, L. Sobczyk, Acta Phys. Pol. A 39, 59 (1971)

    Google Scholar 

  32. S.V. Rathan, G. Govindaraj, Mater. Chem. Phys. 120, 255 (2010)

    Article  Google Scholar 

  33. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Alloys Compd. 540, 267 (2012)

    Article  Google Scholar 

  34. A. Omri, E. Dhahri, M. Es-Souni, L.C. Costa, J. Alloy. Compd. 497, 173 (2012)

    Article  Google Scholar 

  35. M.D. Ingram, Phys. Chem. Glas. 28, 215 (1987)

    Google Scholar 

  36. A.K. Jonscher, Universal relaxation law (Chelsea Dielectics Press, London, 1996)

    Google Scholar 

  37. Lin, Y. Q., Chen, X. M., & Liu, X. Q. (2009), 149(19–20), 784–787.

  38. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  39. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  40. K. Shimakawa, Philos. Mag. B 46, 123 (1982)

    Article  ADS  Google Scholar 

  41. S.R. Elliott, Philos. Mag. B 36, 129 (1978)

    Google Scholar 

  42. J.B. Goodenough, A. Wold, R.J. Arnott, N. Menyuk, Phys. Rev. 124, 373–384 (1961)

    Article  ADS  Google Scholar 

  43. D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, D.D. Sarma, Phys. Rev. Lett. 108, 127201 (2012)

    Article  ADS  Google Scholar 

  44. R.N. Bhowmik, R. Ranganathan, Phys. Rev. B 74, 214417 (2006)

    Article  ADS  Google Scholar 

  45. J.B. Goodenough, R.I. Dass, Internat. J. Inorg. Mat 2, 3 (2000)

    Article  Google Scholar 

  46. J. Navarro, L. Balcells, F. Sandiumenge, M. Bibes, A. Roig, B. Martinez, J. Fontcuberta, J. Phys.: Condens. Matter 13, 8481 (2001)

    ADS  Google Scholar 

  47. A.S. Ogale, S.B. Ogale, R. Ramesh, T. Venkatesan, Appl. Phys. Lett 75, 537 (1999)

    Article  ADS  Google Scholar 

  48. Y. Tomioka, T. Okuda, Y. Okimoto, R. Kumai, K.I. Kobayashi, Y. Tokura, Phys. Rev. B 61, 422 (2000)

    Article  ADS  Google Scholar 

  49. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, I. Tokura, Nature 395, 677 (1998)

    Article  ADS  Google Scholar 

  50. M.H. Lewis, Defects in spinel crystals grown by the verneuil process. Phil. Mag. 14, 1003 (1966)

    Article  ADS  Google Scholar 

  51. A.G. Fitzgerald, R. Engin, Thin Solid Films 20, 317 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the FEDER funds through the COMPETE 2020 Program and National Funds through FCT—Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Iben Nassar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassar, K.I., Rammeh, N., Teixeira, S.S. et al. Effect of Pr substitution in the A site on the structural, dielectric and magnetic properties of double perovskite La2NiMnO6. Appl. Phys. A 128, 373 (2022). https://doi.org/10.1007/s00339-022-05520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05520-1

Keywords

Navigation