Log in

Improvement of soft magnetic properties and in-plane uniaxial magnetic anisotropy in FeCoAlO films fabricated by asymmetric targets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Soft magnetic FeCoAlO thin films were prepared by asymmetric targets, and their magnetic properties and high-frequency characteristics were studied. The coercivity Hc of the films initially decreased with increasing the number of Al2O3 chips on the Fe70Co30 target. Then, the minimum value of the coercivity was observed for the film prepared with 12 Al2O3 chips (Hc||= 6.3 Oe and Hc⊥ = 1.9 Oe, Hk = 110 Oe), and as more Al2O3 chips were added, the coercivity increased. The good soft magnetic properties of the films mainly came from the refinement of grain size. The films also had excellent high-frequency response, i.e., fr = 3.4 GHz, and the real part of the permeability μ′ at low frequency had a large value of approximately 200 for the film prepared with 12 Al2O3 chips. For 16 Al2O3 chips, the film had fr = 3.7 GHz and μ′ ~ 150 when f < 3.0 GHz. The analysis of film composition demonstrated that there was a composition gradient in the FeCoAlO films fabricated by asymmetric targets, which resulted in additional stress-induced anisotropy that produced greater in-plane uniaxial magnetic anisotropy. These kinds of thin films showed promise for applications in microwave magnetic film devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Wu, M. Lekas, R. Davies, K.L. Shepard, N. Sturcken, IEEE Trans. Magn. 52, 8401204 (2016)

    Google Scholar 

  2. B.S. Ram, A.K. Paul, S.V. Kulkarni, J. Magn. Magn. Mater. 537, 168210 (2021)

    Article  Google Scholar 

  3. H. Wu, M. Khdour, P. Apsangi, H.B. Yu, IEEE Trans. Magn. 53, 2004507 (2017)

    Google Scholar 

  4. R. Anthony, N.N. Wang, D.P. Casey, C.Ó. Mathúna, J.F. Rohan, J. Magn. Magn. Mater. 406, 89 (2016)

    Article  ADS  Google Scholar 

  5. G.V. Kurlyandskaya, S.V. Shcherbinin, S.O. Volchkov, S.M. Bhagat, E. Calle, R. Pérez, M. Vazquez, J. Magn. Magn. Mater. 459, 154 (2018)

    Article  ADS  Google Scholar 

  6. Y.J. Peng, B.M.F. Rahman, T.X. Wang, C. Nowrin, M. Ali, G.A. Wang, J. Appl. Phys. 117, 17B709 (2015)

    Article  Google Scholar 

  7. X.M. Liu, P. Evans, G. Zangari, IEEE Trans. Magn. 36, 3479 (2000)

    Article  ADS  Google Scholar 

  8. X. Wang, F. Zheng, Z.Y. Liu, X.X. Liu, D. Wei, F.L. Wei, J. Appl. Phys. 105, 07B714 (2009)

    Article  Google Scholar 

  9. H.S. Jung, W.D. Doyle, J.E. Wittig, J.F. Al-Sharab, J. Bentley, Appl. Phys. Lett. 81, 2415 (2002)

    Article  ADS  Google Scholar 

  10. H.S. Jung, W.D. Doyle, S. Matsunuma, J. Appl. Phys. 93, 6462 (2003)

    Article  ADS  Google Scholar 

  11. Y. Fu, T. Miyao, J.W. Cao, Z. Yang, M. Matsumoto, X.X. Liu, A. Morisako, J. Magn. Magn. Mater. 308, 165 (2007)

    Article  ADS  Google Scholar 

  12. A. Acosta, K. Fitzell, J.D. Schneider, C.Z. Dong, Z. Yao, R. Sheil, Y.X.E. Wang, G.P. Carman, N.X. Sun, J.P. Chang, J. Appl. Phys. 128, 013903 (2020)

    Article  ADS  Google Scholar 

  13. K. Acosta, J.D. Fitzell, C.Z. Schneider, Z. Dong, Y.X.E. Yao, G.P. Wang, N.X. Carman, J.P. Sun, Chang. Appl. Phys. Lett. 116, 222404 (2020)

    Article  ADS  Google Scholar 

  14. V. Edon, S. Dubourg, J. Vernières, B. Warot-Fonrose, J.F. Bobo, J. Appl. Phys. 107, 09A321 (2010)

    Article  Google Scholar 

  15. G. Herzer, IEEE Trans. Magn. 25, 3327 (1989)

    Article  ADS  Google Scholar 

  16. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990)

    Article  ADS  Google Scholar 

  17. G. Herzer, J. Magn. Magn. Mater. 294, 99 (2005)

    Article  ADS  Google Scholar 

  18. X.L. Tang, Y. Yu, H. Su, H.W. Zhang, Z.Y. Zhong, Y.L. **g, J. Mater. Sci. 53, 3573 (2018)

    Article  ADS  Google Scholar 

  19. F. Zheng, Z. Ma, H. Gao, F.C. Pan, S.T. Li, J.W. Cao, J.M. Bai, F.L. Wei, J. Mater. Sci. Mater. El. 28, 17448 (2017)

    Article  Google Scholar 

  20. L.R. Zhang, D.D. Gao, H. Liu, J.Y. **e, W.B. Hu, Materials 12, 2328 (2019)

    Article  ADS  Google Scholar 

  21. C.C. Yang, C. Zhang, F.L. Wang, Z. Zhao, C.J. Jiang, D.S. Xue, Appl. Phys. A 120, 1159 (2015)

    Article  ADS  Google Scholar 

  22. X.L. Fan, D.S. Xue, M. Lin, Z.M. Zhang, D.W. Guo, C.J. Jiang, J.Q. Wei, Appl. Phys. Lett. 92, 222505 (2008)

    Article  ADS  Google Scholar 

  23. G.Z. Chai, D.S. Xue, X.L. Fan, X.L. Li, D.W. Guo, Appl. Phys. Lett. 93, 152516 (2008)

    Article  ADS  Google Scholar 

  24. G.Z. Chai, Y.C. Yang, J.Y. Zhu, M. Lin, W.B. Sui, D.W. Guo, X.L. Li, D.S. Xue, Appl. Phys. Lett. 96, 012505 (2010)

    Article  ADS  Google Scholar 

  25. S.D. Li, Z.G. Huang, J.G. Duh, M. Yamaguchi, Appl. Phys. Lett. 92, 092501 (2008)

    Article  ADS  Google Scholar 

  26. S.D. Li, H.L. Du, Q. Xue, S.M. **e, M. Liu, W.Q. Shao, J. Xu, T.X. Nan, N.X. Sun, J.G. Duh, J. Appl. Phys. 113, 17A332 (2013)

    Article  Google Scholar 

  27. N.N. Phuoc, C.K. Ong, Adv. Mater. 25, 980 (2013)

    Article  Google Scholar 

  28. N.N. Phuoc, C.K. Ong, Appl. Phys. Lett. 102, 212406 (2013)

    Article  ADS  Google Scholar 

  29. N.N. Phuoc, L.T. Hung, C.K. Ong, J. Alloy. Compd. 509, 4010 (2011)

    Article  Google Scholar 

  30. Y.S. Cui, M.L. Ding, S.J. Poon, T.P. Adl, S. Keshavarz, T. Mewes, S.A. Wolf, J.W. Lu, J. Appl. Phys. 114, 153902 (2013)

    Article  ADS  Google Scholar 

  31. D.J. Craik, E. Hill, Phys. Lett. A 48, 157 (1974)

    Article  ADS  Google Scholar 

  32. G. Herzer, Scr. Metall. Mater. 33, 1741 (1995)

    Article  Google Scholar 

  33. G. Herzer, Handb. Magn. Mater. 10, 415 (1997)

    Article  Google Scholar 

  34. J.F. Löffler, H.B. Braun, W. Wagner, G. Kostorz, A. Wiedenmann, Mater. Sci. Eng. A 304–306, 1050 (2001)

    Article  Google Scholar 

  35. T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004)

    Article  ADS  Google Scholar 

  36. S.H. Ge, D.S. Yao, M. Yamaguchi, X.L. Yang, H.P. Zuo, T. Ishii, D. Zhou, F.S. Li, J. Phys. D Appl. Phys. 40, 3660 (2007)

    Article  ADS  Google Scholar 

  37. Y.P. Wu, G.C. Han, L.B. Kong, J. Magn. Magn. Mater. 322, 3223 (2010)

    Article  ADS  Google Scholar 

  38. L. Kraus, Z. Frait, J. Schneider, Phys. Status Solidi A 64, 449 (1981)

    Article  ADS  Google Scholar 

  39. A. Inoue, B.L. Shen, C.T. Chang, Acta Mater. 52, 4093 (2004)

    Article  ADS  Google Scholar 

  40. K.S. Chan, H. Ji, X. Wang, S.J. Hudak Jr., B.R. Lanning, Mater. Sci. Eng. A 422, 298 (2006)

    Article  Google Scholar 

  41. M. Senda, O. Ishii, IEEE Trans. Magn. 30, 155 (1994)

    Article  ADS  Google Scholar 

  42. N.N. Phuoc, C.K. Ong, Phys. B 406, 3514 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Ningxia (Grant no. 2018AAC03054) and the National Natural Science Foundation of China (Grant no. 11964027).

Funding

This study was funded by the Natural Science Foundation of Ningxia (Grant no. 2018AAC03054) and the National Natural Science Foundation of China (Grant no. 11964027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Han, Z., Li, S. et al. Improvement of soft magnetic properties and in-plane uniaxial magnetic anisotropy in FeCoAlO films fabricated by asymmetric targets. Appl. Phys. A 128, 253 (2022). https://doi.org/10.1007/s00339-022-05403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05403-5

Keywords

Navigation