Log in

Investigation of structural, morphological and optical properties of co-doped gold/selenite-hydroxyapatite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gold and Selenium ions have been incorporated into hydroxyapatite (HAP) using the co-precipitation technique at different contributions of Au(III). The obtained compositions were inspected via X-ray diffraction (XRD), Fourier transforms infrared (FTIR), and field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). Structural parameters showed that Au content has a noticeable role in altering HAP lattice. TEM images display that the grain width decreased from 30 nm in 0.0Au/Se-HAP to 15 nm in 0.8Au/Se-HAP. The c/a ratio denoted a slight distortion in lattice after Au(III) contribution. Moreover, the roughness average increased from 26.3 nm reaching 32.4 nm for the lowest and the highest additional Au(III) contents. The compositions of 0.4Au/Se-HAP and 0.6Au/Se-HAP showed low crystallinity with surface defects, subsequently the highest percentage in cell viability. Furthermore, the indirect bandgaps become narrow with increasing additional Au(III) contribution starting from 6.45 to 6.40 eV. The refractive index shows a decreasing trend from 1.61 to 1.59 with increasing the Au(III) content. Cell viability starts from 94.0 ± 5% in 0.0Au/Se-HAP composition and increases gradually to more than 98.2 ± 4% for 0.6Au/Se-HAP. This work might boost more exploration of Au/Se-HAP as a promising material for biomedical utilizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Zhou, K. Li, B. Wang, F. Ai, Nano-hydroxyapatite/ZnO coating prepared on a biodegradable Mg–Zn–Ca bulk metallic glass by one-step hydrothermal method in acid situation. Ceram. Int. 46(5), 6958–6964 (2020)

    Article  Google Scholar 

  2. C.J. Zhang, M. Hu, Q.F. Ke, C.X. Guo, Y.J. Guo, Y.P. Guo, Nacre-inspired hydroxyapatite/chitosan layered composites effectively remove lead ions in continuous-flow wastewater. J. hazard. mater. 386, 121999 (2020)

    Article  Google Scholar 

  3. C. Zhang, T. Uchikoshi, L. Liu, M. Kikuchi, I. Ichinose, Nest-like microstructured biocompatible membrane fabricated by hydrothermally-synthesized hydroxyapatite (HAp) whiskers. J. Eur. Ceram. Soc. 40(2), 513–520 (2020)

    Article  Google Scholar 

  4. S. Sathiyavimal, S. Vasantharaj, F. LewisOscar, R. Selvaraj, K. Brindhadevi, A. Pugazhendhi, Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Prog. Org. Coat 147, 105858 (2020)

    Article  Google Scholar 

  5. I.S. Yahia, M. Shkir, S.M.A.S. Keshk, Physicochemical properties of a nanocomposite (graphene oxide-hydroxyapatite-cellulose) immobilized by Ag nanoparticles for biomedical applications. Results in Phys. 16, 102990 (2020)

    Article  Google Scholar 

  6. V.S. Yadav, A. Kumar, A. Das, D. Pamu, L.M. Pandey, M.R. Sankar, Degradation kinetics and surface properties of bioceramic hydroxyapatite coated AZ31 magnesium alloys for biomedical applications. Mater. Lett. 270, 127732 (2020)

    Article  Google Scholar 

  7. I. Ullah, M.A. Siddiqui, S.K. Kolawole, H. Liu, J. Zhang, L. Ren, K. Yang, Synthesis, characterization and in vitro evaluation of zinc and strontium binary doped hydroxyapatite for biomedical application. Ceram. Int. 46, 14448–14459 (2020)

    Article  Google Scholar 

  8. R. Zou, T. Xu, X. Lei, Q. Wu, S. Xue, Novel and efficient red phosphorus/hollow hydroxyapatite microsphere photocatalyst for fast removal of antibiotic pollutants. J. Phys. Chem. Solids 139, 109353 (2020)

    Article  Google Scholar 

  9. Z. Zhou, B. Zheng, Y. Gu, C. Shen, J. Wen, Z. Meng, S. Chen, J. Ou, A. Qin, New approach for improving anticorrosion and biocompatibility of magnesium alloys via polydopamine intermediate layer-induced hydroxyapatite coating. Surf. Interfaces 19, 100501 (2020)

    Article  Google Scholar 

  10. H. El-Hamshary, M.E. El-Naggar, A. El-Faham, M.A. Abu-Saied, M.K. Ahmed, M. Al-Sahly, Preparation and characterization of nanofibrous scaffolds of ag/vanadate hydroxyapatite encapsulated into polycaprolactone: morphology, mechanical, and in vitro cells adhesion. Polymers (Basel) 13(8), 1327 (2021)

    Article  Google Scholar 

  11. A.V. Sadetskaya, N.P. Bobrysheva, M.G. Osmolowsky, O.M. Osmolovskaya, M.A. Voznesenskiy, Correlative experimental and theoretical characterization of transition metal doped hydroxyapatite nanoparticles fabricated by hydrothermal method. Mater. Charact. 173, 110911 (2021)

    Article  Google Scholar 

  12. W.D. Lee, R. Gawri, R.M. Pilliar, W.L. Stanford, R.A. Kandel, Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs. Acta Biomater. 62, 352–361 (2017)

    Article  Google Scholar 

  13. L. Xu, X. Shi, Q. Qian, X. Bai, L. XuQ, Wang, Hydrothermal sterilization in silver nitrate solution endows plasma sprayed hydroxyapatite coating with antibacterial property. Mater. Lett. 263, 127258 (2020)

    Article  Google Scholar 

  14. V.C. Arun Prakash, I. Venda, V. Thamizharasi, E. Sathya, A new attempt on synthesis of spherical nano hydroxyapatite powders prepared by dimethyl sulfoxide–poly vinyl alcohol assisted microemulsion method. Mater. Chem. Phys. 259, 124097 (2021)

    Article  Google Scholar 

  15. N. Vargas-Becerril, D.A. Sánchez-Téllez, L. Zarazúa-Villalobos, D.M. González-García, M.A. Álvarez-Pérez, C. de León-Escobedo, L. Téllez-Jurado, Structure of biomimetic apatite grown on hydroxyapatite (HA). Ceram. Int. 46, 28806–28813 (2020)

    Article  Google Scholar 

  16. A. Rezaei et al., Hydroxyapatite/hydroxyapatite-magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants. Ceram. Int. 46(16), 25374–25381 (2020)

    Article  Google Scholar 

  17. P.-P. Zhao, H.-R. Hu, J.-Y. Liu, Q.-F. Ke, X.-Y. Peng, H. Ding, Y.-P. Guo, Gadolinium phosphate/chitosan scaffolds promote new bone regeneration via Smad/Runx2 pathway. Chem. Eng. J. 359, 1120–1129 (2019)

    Article  Google Scholar 

  18. H. Zhang, L. Peng, A. Chen, C. Shang, M. Lei, K. He, S. Luo, J. Shao, Q. Zeng, Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Carbohydr. Polym. 214, 276–285 (2019)

    Article  Google Scholar 

  19. D. Zhang, L. Wang, H. Zeng, P. Yan, J. Nie, V.K. Sharma, C. Wang, A three-dimensional macroporous network structured chitosan/cellulose biocomposite sponge for rapid and selective removal of mercury(II) ions from aqueous solution. Chem. Eng. J. 363, 192–202 (2019)

    Article  Google Scholar 

  20. A.A. Menazea, S.A. Abdelbadie, M.K. Ahmed, Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. App. Surf. Sci. 508, 145299 (2020)

    Article  Google Scholar 

  21. M.K. Ahmed, R. Ramadan, M. Afifi, A.A. Menazea, Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. J. Market. Res. 9(4), 8854–8866 (2020)

    Google Scholar 

  22. G. Vidhya, G.S. kumar, V.S. kattimani, E.K. Girija, Comparative study of hydroxyapatite prepared from eggshells and synthetic precursors by microwave irradiation method for medical applications. Mater. Today: Proc. 15, 344–352 (2019)

    Google Scholar 

  23. G. Tian, G. Zhu, S. Xu, T. Ren, A novel shape memory poly(ɛ-caprolactone)/hydroxyapatite nanoparticle networks for potential biomedical applications. J. Solid State Chem. 272, 78–86 (2019)

    Article  ADS  Google Scholar 

  24. M.K. Ahmed, S.F. Mansour, R. Al-Wafi, M. Afifi, V. Uskokovic, Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous epsilon-polycaprolactone scaffolds for tissue engineering. Int. J. pharm. 577, 118950 (2020)

    Article  Google Scholar 

  25. S. Sridevi, S. Ramya, K. Akshaikumar, L. Kavitha, P. Manoravi, D. Gopi, Fabrication of zinc substituted hydroxyapatite/cellulose nano crystals biocomposite from biowaste materials for biomedical applications. Mate. Today: Proc. 26, 3583–3587 (2019)

    Google Scholar 

  26. D. Sivaraj, K. Vijayalakshmi, Enhanced antibacterial and corrosion resistance properties of Ag substituted hydroxyapatite/functionalized multiwall carbon nanotube nanocomposite coating on 316L stainless steel for biomedical application. Ultrason. Sonochem. 59, 104730 (2019)

    Article  Google Scholar 

  27. V. Saxena, I. Shukla, L.M. Pandey (2019), Hydroxyapatite: an inorganic ceramic for biomedical applications, 205–249.

  28. L. He, H. Li, X. Chen, T. Xu, T. Sun, H. Huang, M. Lu, Y. Yin, J. Ge, J. Weng, N. Zhuo, K. Duan, Selenium-substituted hydroxyapatite particles with regulated microstructures for osteogenic differentiation and anti-tumor effects. Ceram. Int. 45(11), 13787–13798 (2019)

    Article  Google Scholar 

  29. L. Wei, D. Pang, L. He, C. Deng, Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 43(18), 16141–16148 (2017)

    Article  Google Scholar 

  30. K. Shoueir, S. Kandil, H. El-hosainy, M. El-Kemary, Tailoring the surface reactivity of plasmonic Au@TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. J. Clean. Prod. 230, 383–393 (2019)

    Article  Google Scholar 

  31. I.S. Elashmawi, A.A. Menazea, Different time’s Nd:YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. J. Market. Res. 8(2), 1944–1951 (2019)

    Google Scholar 

  32. S. Panicker, I.M. Ahmady, C. Han, M. Chehimi, A.A. Mohamed, On demand release of ionic silver from gold-silver alloy nanoparticles: fundamental antibacterial mechanisms study. Mater. Today Chem. 16, 100237 (2020)

    Article  Google Scholar 

  33. Z.A. Al-Ahmed, N.S. Al-Radadi, M.K. Ahmed, K. Shoueir, M. El-Kemary, Dye removal, antibacterial properties, and morphological behavior of hydroxyapatite doped with Pd ions. Arab. J. Chem. 13(12), 8626–8637 (2020)

    Article  Google Scholar 

  34. M.K. Ahmed, S.F. Mansour, R. Al-Wafi, M. Afifi, V. Uskoković, Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous ε-polycaprolactone scaffolds for tissue engineering. Int. J. Pharm. 577, 118950 (2020)

    Article  Google Scholar 

  35. V. Uskoković, M.A. Iyer, V.M. Wu, One ion to rule them all: the combined antibacterial, osteoinductive and anticancer properties of selenite-incorporated hydroxyapatite. J. Mater. Chem. B 5(7), 1430–1445 (2017)

    Article  Google Scholar 

  36. S.F. Mansour, S.I. El-dek, M. Ismail, M.K. Ahmed, Structure and cell viability of Pd substituted hydroxyapatite nano particles. Biomed. Phys. Eng. Express 4(4), 045008 (2018)

    Article  Google Scholar 

  37. A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by sol-gel method. J. Mol. Struct. 1196, 332–337 (2019)

    Article  ADS  Google Scholar 

  38. S.-M. Kwon, S.-J. Lee, I.-J. Shon, Enhanced properties of nanostructured ZrO2–graphene composites rapidly sintered via high-frequency induction heating. Ceram. Int. 41(1), 835–842 (2015)

    Article  Google Scholar 

  39. A.K.D.V.K. Wimalasiri, M.S. Fernando, G.R. Williams, D.P. Dissanayake, K.M.N. de Silva, R.M. de Silva, Microwave assisted accelerated fluoride adsorption by porous nanohydroxyapatite. Mater. Chem. Phys. 257, 123712 (2021)

    Article  Google Scholar 

  40. R. Tchoffo, G.B.P. Ngassa, I.K. Tonlé, E. Ngameni, Electroanalysis of diquat using a glassy carbon electrode modified with natural hydroxyapatite and β-cyclodextrin composite. Talanta 222, 121550 (2021)

    Article  Google Scholar 

  41. C. Wang, K.J. Jeong, J. Kim, S.W. Kang, J. Kang, I.H. Han, I.W. Lee, S.J. Oh, J. Lee, Emission-tunable probes using terbium(III)-doped self-activated luminescent hydroxyapatite for in vitro bioimaging. J. Colloid Interface Sci. 581(Pt A), 21–30 (2020)

    Article  ADS  Google Scholar 

  42. Y. **ng, S. Liu, X. Luo, W. Wan, J. Wan, T. Zhang, W. Chen, Q. Huang, Efficient immobilization of Cd2+ by nanoscale carbonate hydroxyapatite synthesized by ureolytic bacteria. J. Clean. Prod. 279, 123619 (2021)

    Article  Google Scholar 

  43. S.F. Mansour, R. Al-Wafi, M.K. Ahmed, S. Wageh, Microstructural, morphological behavior and removal of Cr(VI) and Se(IV) from aqueous solutions by magnetite nanoparticles/PVA and cellulose acetate nanofibers, Applied Physics A 126(3) (2020).

  44. R. Al-Wafi, S.F. Mansour, M.K. Ahmed, Mechanical, microstructural properties and cell adhesion of Sr/Se-hydroxyapatite/graphene/polycaprolactone nanofibers. J. Thermoplast. Compos. Mater. 34(4), 536–556 (2020)

    Google Scholar 

  45. R. Al-Wafi, M.K. Ahmed, S.F. Mansour, Tuning the synthetic conditions of graphene oxide/magnetite/ hydroxyapatite/cellulose acetate nanofibrous membranes for removing Cr(VI), Se(IV) and methylene blue from aqueous solutions. J. Water Proc. Eng. 38, 101543 (2020)

    Article  Google Scholar 

  46. D. Franco, L.M. De Plano, M.G. Rizzo, S. Scibilia, G. Lentini, E. Fazio, F. Neri, S.P.P. Guglielmino, A.M. Mezzasalma, Bio-hybrid gold nanoparticles as SERS probe for rapid bacteria cell identification, Spectrochimica acta. Part A, Mole. Biomole. Spectrosc. 224, 117394 (2020)

    Article  Google Scholar 

  47. A.A. Menazea, N.S. Awwad, H.A. Ibrahium, M.K. Ahmed, Casted polymeric blends of carboxymethyl cellulose/polyvinyl alcohol doped with gold nanoparticles via pulsed laser ablation technique; morphological features, optical and electrical investigation. Radiat. Phys. Chem. 177, 109155 (2020)

    Article  Google Scholar 

  48. A.A. Menazea, One-Pot Pulsed Laser Ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement. J. Mater. Res. Technol. 1207, 127807 (2020)

    Google Scholar 

  49. S.I. El-dek, S.F. Mansour, M.A. Ahmed, M.K. Ahmed, Microstructural features of flower like Fe brushite. Prog. Nat. Sci.Mater. Int. 27(4), 520–526 (2017)

    Article  Google Scholar 

  50. S.F. Mansour, S.I. El-dek, M.A. Ahmed, S.M. Abd-Elwahab, M.K. Ahmed, Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases. Appl. Nanosci. 6(7), 991–1000 (2015)

    Article  ADS  Google Scholar 

  51. M.A. Ahmed, S.F. Mansour, S.I. El-dek, S.M. Abd-Elwahab, M.K. Ahmed, Characterization and annealing performance of calcium phosphate nanoparticles synthesized by co-precipitation method. Ceram. Int. 40(8), 12807–12820 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for supporting this work through research groups program under Grant Number R.G.P2/108/41. Also authors acknowledge the support through institutional funding program by ministry of education through grant number: IFP-KKU-2020/11

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. K. Ahmed or M. Afifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.K., Afifi, M., Ibrahium, H.A. et al. Investigation of structural, morphological and optical properties of co-doped gold/selenite-hydroxyapatite. Appl. Phys. A 127, 740 (2021). https://doi.org/10.1007/s00339-021-04805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04805-1

Keywords

Navigation