Log in

Extending and lowering bandgaps by cross-like beams phononic crystals with perforation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aiming at the problem of low-frequency vibration and noise control in the engineering applications, a new two-dimensional phononic crystal consisting of cross-like copper beams embedded in silicon rubber plates with holes is designed and the bandgap characteristics are calculated by the finite element method. Meanwhile, the acoustic displacement fields of the bandgap edges are analyzed to clarify the mechanism of the bandgap generation and the effects of parameters variation on the band structure are discussed carefully. In addition, considering the application value of the model, the combination sealing plate structures with large size are further investigated and described. Results show that a wide low-frequency bandgap is opened and the generation of the bandgap is due to the out-plane torsional vibration of the cross-like beams. The bandgaps mainly depend on the matching degree of material and the geometry parameters of periodic hole, while the bandgaps are not quite sensitive to the thickness of plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Wang, J.X. Zhou, H.J. Ouyang, L. Cheng, D.L. Xu, Int. J. Mech. Sci. 176, 105548 (2020)

    Article  Google Scholar 

  2. H.J. Shen, D.L. Yu, Z.Y. Tang, Y.S. Su, Y.F. Li, J.W. Liu, Acta. Phys. Sin. 68, 144301 (2019)

    Google Scholar 

  3. A. Allam, K. Sabra, A. Erturk, Phys. Rev. Appl. 13, 064064 (2020)

    Article  ADS  Google Scholar 

  4. Q. Geng, T.Y. Cai, Y.M. Li, J. Appl. Phys. 125, 035103 (2019)

    Article  ADS  Google Scholar 

  5. J. Liu, Z.L. Hou, X.J. Fu, Acta. Phys. Sin. 63, 034305 (2015)

    Google Scholar 

  6. H.B. Shao, G.P. Chen, H. He, J.H. Jiang, Chin. Phys. B 27, 126301 (2018)

    Article  Google Scholar 

  7. T. Liao, X.W. Sun, T. Song, J.H. Tian, T.F. Kang, W.B. Sun, Acta. Phys. Sin. 67, 214208 (2018)

    Google Scholar 

  8. J. Choi, I. Jung, C.Y. Kang, Nano Energy 56, 169 (2019)

    Article  Google Scholar 

  9. G.S. Liu, Y. Zhou, M.H. Liu, Y. Yuan, X.Y. Zou, J.C. Cheng, Sci. Rep. 10, 981 (2020)

    Article  ADS  Google Scholar 

  10. P. Arrangoiz-Arrioala, E. Alex-Wollack, M. Pechal, J.D. Witmer, J.T. Hill, A.H. Safavi-Naeini, Phys. Rev. X 8, 031007 (2018)

    Google Scholar 

  11. H. Peng, P.F. Pai, H.G. Deng, Int. J. Mech. Sci. 103, 104 (2015)

    Article  Google Scholar 

  12. D. Caballero, J. Sanchez-Dehesa, C. Rubio, R. Martinez-Sala, J.V. Sanchez-Perez, F. Meseguer, J. Llinares, Phys. Rev. E 60, R6316 (1999)

    Article  ADS  Google Scholar 

  13. Z.Y. Liu, X.X. Zhang, Y.M. Mao, Y.Y. Zhu, Z.Y. Yang, C.T. Chan, P. Sheng, Science 289, 1734 (2000)

    Article  ADS  Google Scholar 

  14. J.C. Hsu, T.T. Wu, Appl. Phys. Lett. 90, 201904 (2007)

    Article  ADS  Google Scholar 

  15. K.P. Yu, T.N. Cheng, X.P. Wang, Phys. B 416, 12 (2013)

    Article  ADS  Google Scholar 

  16. J.H. Ma, Z.L. Hou, B.M. Assouar, J. Appl. Phys. 115, 093058 (2014)

    Google Scholar 

  17. Z. Zhang, X.K. Han, Phys. Lett. A 380, 3766 (2016)

    Article  ADS  Google Scholar 

  18. Y.F. Wang, Y.S. Wang, X.X. Su, J. Appl. Phys. 110, 113520 (2011)

    Article  ADS  Google Scholar 

  19. M. Moscatelli, R. Ardito, L. Driemeier, C. Comi, J. Sound Vib. 454, 73 (2019)

    Article  ADS  Google Scholar 

  20. J.N. Jiang, H. Yao, J.B. Zhao, S. Zhang, Z.H. He, X. Chen, J. Phys, Conf. Ser. 1213, 042071 (2019)

    Article  Google Scholar 

  21. T. Cavalieri, A. Cebrecos, C. Chaufour, V. Romero-Garcia, Appl. Acoust. 146, 1 (2019)

    Article  Google Scholar 

  22. L. Salari-Sharif, B. Haghpanah, A. Guell Izard, M. Tootkaboni, L. Valdevit, Phys. Rev. Appl. 11, 024062 (2019)

    Article  ADS  Google Scholar 

  23. S.B. Li, Y.H. Dou, T.N. Chen, J.N. Xu, B. Li, F. Zhang, Phys. Lett. A 15, 37 (2019)

    Google Scholar 

  24. X.D. Wu, M.H. Zhang, S.G. Zuo, H.D. Huang, H. Wu, J. Vib. Control 25, 386 (2018)

    Article  Google Scholar 

  25. X.D. Wu, L.Z. Sun, S.G. Zuo, P.X. Liu, H.D. Huang, Appl. Acoust. 151, 1 (2019)

    Article  Google Scholar 

  26. L.J. Li, X.Y. Gang, Z.Y. Sun, X.X. Zhang, F. Zhang, Adv. Eng. Softw. 125, 19 (2018)

    Article  Google Scholar 

  27. F. Mir, M. Saadatzi, R.U. Ahmed, S. Banerjee, Appl. Acoust. 139, 282 (2018)

    Article  Google Scholar 

  28. C. Rubio, S. Castineira-Ibanez, A. Uris, F. Belmar, P. Candelas, Appl. Acoust. 141, 144 (2018)

    Article  Google Scholar 

  29. C.Y. Zhao, L.C. Wang, D.Y. Liu, X. Gao, X. Shen, W. **, J. Vib. Control 25, 2553 (2019)

    Article  Google Scholar 

  30. X.P. Wang, Y.Y. Chen, G.J. Zhou, T.N. Chen, F.Y. Ma, J. Sound Vib. 459, 114876 (2019)

    Google Scholar 

  31. C. Etienne, L. Thomas, A. Mahmoud, E. Sebastien, V. Pascal, K. Abdeikrim, J. Appl. Phys. 118, 214902 (2015)

    Article  Google Scholar 

  32. COMSOL Multiphysics® v. 5.3. cn.comsol.com. COMSOL AB, Stockholm, Sweden.

  33. P. Peng, J. Mei, Y. Wu, Phys. Rev. B 86, 134304 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Support and Guidance Project of Universities in Gansu Province, the Key Talent Foundation of Gansu Province (No. 2020RCXM100), the Key Natural Science Foundation of Gansu Province (No. 20JR5RA427), the Innovation Fund Project of Colleges and Universities in Gansu Province (No. 2020A-039) and the Excellent Research Team of Lanzhou Jiaotong University (No. 201803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Tian or **ao-Wei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Song, T., Tian, M. et al. Extending and lowering bandgaps by cross-like beams phononic crystals with perforation. Appl. Phys. A 127, 490 (2021). https://doi.org/10.1007/s00339-021-04637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04637-z

Keywords

Navigation