Log in

Magnetron sputtering nichrome on fiber fabric to construct microwave-absorbing structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nichrome has a small resistance temperature coefficient, high resistance accuracy and resistivity, good thermal stability and chemical stability, which has great potential for high temperature stealth applications, yet not been mentioned in previous studies. In this paper, a microwave-absorbing structure based on Salisbury screen produced by nichrome coated quartz fiber fabric (NFF) and pristine quartz fiber fabric (PFF) is proposed. A direct current (DC) magnetron sputtering technique is used to form the nichrome coating onto the quartz fiber fabric. The morphology, element, and phase identification of nichrome coated quartz fiber fabrics were examined by SEM, EDS, and XRD, respectively. The reflectivity of the proposed structure of nichrome coated quartz fiber fabrics sputtered at one side or both sides is obviously different, and relative to the sputtering time and the number of pristine quartz fiber fabric tiers. The so-made microwave-absorbing structure is thin and lightweight, and exhibits good absorption performance in X and Ku frequency band, with wide bandwidth below − 10 dB from 8.5 to 15.5 GHz, and reached a lowest reflectivity of − 53 dB at 11.48 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Tian, H.-T. Liu, H.-F. Cheng, Compos. Sci. Technol. 90, 202–208 (2014)

    Article  Google Scholar 

  2. H. Wang, D. Zhu, W. Zhou, F. Luo, J. Alloy. Compd. 648, 313–319 (2015)

    Article  Google Scholar 

  3. W. Zhou, P. **ao, Y. Li, Appl. Surf. Sci. 258, 8455–8459 (2012)

    Article  ADS  Google Scholar 

  4. W. Hong, P. **ao, Z. Li, H. Luo, Carbon 79, 538–543 (2014)

    Article  Google Scholar 

  5. W. Zhou, P. **ao, Y. Li, L. Zhou, Ceram. Int. 39, 6569–6576 (2013)

    Article  Google Scholar 

  6. H. Luo, P. **ao, L. Huang, W. Hong, Ceram. Int. 40, 8253–8259 (2014)

    Article  Google Scholar 

  7. L. Zhang, C. Shi, K.Y. Rhee, N. Zhao, Compos. A Appl. Sci. Manuf. 43, 2241–2248 (2012)

    Article  Google Scholar 

  8. Y. Qing, W. Zhou, S. Huang, Z. Huang, F. Luo, D. Zhu, Compos. Sci. Technol. 89, 10–14 (2013)

    Article  Google Scholar 

  9. H. Wang, D. Zhu, W. Zhou, F. Luo, Chem. Phys. Lett. 633, 223–228 (2015)

    Article  ADS  Google Scholar 

  10. C. Gong, J. Zhang, C. Yan, X. Cheng, J. Zhang, L. Yu, Z. **, Z. Zhang, J. Mater. Chem. 22, 3370 (2012)

    Article  Google Scholar 

  11. L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, Carbon 155, 298–308 (2019)

    Article  Google Scholar 

  12. H. Kou, Y. Zhu, M. Chen, Y. Zeng, Y. Pan, J. Guo, Int. J. Appl. Ceram. Technol. 10, 245–250 (2013)

    Article  Google Scholar 

  13. X. Yuan, L. Cheng, L. Zhang, Ceram. Int. 40, 15391–15397 (2014)

    Article  Google Scholar 

  14. B. Wang, H. Li, L. Xu, J. Chen, G. He, RSC Adv. 7, 12126–12132 (2017)

    Article  Google Scholar 

  15. W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil, N. Travitzky, J. Eur. Ceram. Soc. 36, 3681–3689 (2016)

    Article  Google Scholar 

  16. F. Wan, F. Luo, Y. Zhou, W. Zhou, D. Zhu, Surf. Coat. Technol. 264, 9–16 (2015)

    Article  Google Scholar 

  17. Y. Shi, F. Luo, D. Ding, F. Wan, W. Zhou, D. Zhu, Int. J. Appl. Ceram. Technol. 13, 17–22 (2016)

    Article  Google Scholar 

  18. L. Kong, X. Yin, M. Han, L. Zhang, L. Cheng, Ceram. Int. 41, 4906–4915 (2015)

    Article  Google Scholar 

  19. Q. Zhang, Y. Gou, H. Wang, K. Jian, Y. Wang, Mater. Des. 120, 90–98 (2017)

    Article  Google Scholar 

  20. G. Wu, Y. Cheng, Q. **e, Z. Jia, F. **ang, H. Wu, Mater. Lett. 144, 157–160 (2015)

    Article  Google Scholar 

  21. X. Ting, Y. Cao, N.A. Oyler, M. James, L. Liu, X. Chen, Acs Appl. Mater. Interfaces 7, 10407–10413 (2015)

    Article  Google Scholar 

  22. D. Zhu, F. Luo, L. **ong, W. Zhou, Mater. Lett. 61, 1760–1762 (2007)

    Article  Google Scholar 

  23. Y. Li, H. Cheng, N. Wang, S. Zhou, D. **e, T. Li, NANO 13, 1850125 (2018)

    Article  Google Scholar 

  24. N. Yang, Z.X. Luo, G.R. Zhu, S.C. Chen, X.L. Wang, G. Wu, Y.Z. Wang, ACS Appl. Mater. Interfaces 11, 35987–35998 (2019)

    Article  Google Scholar 

  25. Y. Wang, P. **ao, W. Zhou, H. Luo, Z. Li, W. Chen, Y. Li, Ceram. Int. 44, 3606–3613 (2018)

    Article  Google Scholar 

  26. L. Long, W. Zhou, P. **ao, Y. Li, J. Mater. Sci. 30, 3359–3364 (2019)

    Google Scholar 

  27. X. Yuan, L. Cheng, S. Guo, L. Zhang, Ceram. Int. 43, 282–288 (2017)

    Article  Google Scholar 

  28. M. Bakır, M. Karaaslan, F. Dincer, K. Delihacioglu, C. Sabah, J. Mater. Sci. 27, 12091–12099 (2016)

    Google Scholar 

  29. E. Unal, F. Dincer, E. Tetik, M. Karaaslan, M. Bakir, C. Sabah, J. Mater. Sci. 26, 9735–9740 (2015)

    Google Scholar 

  30. H. Wang, D. Zhu, W. Zhou, F. Luo, J. Magn. Magn. Mater. 375, 111–116 (2015)

    Article  ADS  Google Scholar 

  31. X. Yuan, L. Cheng, Y. Zhang, S. Guo, L. Zhang, Mater. Des. 92, 563–570 (2016)

    Article  Google Scholar 

  32. Y.-W. Nam, J.-H. Choi, W.-J. Lee, C.-G. Kim, Compos. Struct. 160, 1171–1177 (2017)

    Article  Google Scholar 

  33. Y. Shen, J. Zhang, Y. Pang, Y. Meng, J. Wang, H. Ma, S. Qu, J. Phys. D Appl. Phys. 51, 315103 (2018)

    Article  Google Scholar 

  34. S. Petrovic, N. Bundaleski, M. Radovic, Z. Ristic, G. Gligoric, D. Perusko, S. Zec, Sci. Sinter. 38, 155–160 (2006)

    Article  Google Scholar 

  35. M. Sumita, K. Sakata, Y. Hayakawa, S. Asai, M. Tanemura, Colloid Polym. Sci. 270, 134–139 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Grant 2015TP1007 under the Science and Technology Plan Project of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuojuan Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, H., Huang, Q. et al. Magnetron sputtering nichrome on fiber fabric to construct microwave-absorbing structure. Appl. Phys. A 126, 863 (2020). https://doi.org/10.1007/s00339-020-04037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04037-9

Keywords

Navigation